分析 根据点与直线的关系,结合同角的三角函数的关系式进行化简即可.
解答 解:∵P(cosα,sinα)在直线y=-2x上,
∴sinα=-2cosα,
即tanα=-2.
则4cos2α+2sinα•cosα-2=$\frac{4co{s}^{2}α+2sinαcosα-2si{n}^{2}α-2co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$
=$\frac{2+2tanα-2ta{n}^{2}α}{1+ta{n}^{2}α}$=$\frac{2+2×(-2)-2×(-2)^{2}}{1+(-2)^{2}}=\frac{2-4-8}{1+4}=-2$.
故答案为:-2.
点评 本题主要考查三角函数的化简与求值,根据同角的三角函数的关系式进行化简转化是解决本题的关键,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率都等于$\frac{2}{3}$ | |
| B. | 事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率都等于$\frac{4}{15}$ | |
| C. | 事件“直到第二次才取到黄色球”的概率等于$\frac{2}{3}$,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于$\frac{4}{15}$ | |
| D. | 事件“直到第二次才取到黄色球”的概率等于$\frac{4}{15}$,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于$\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x甲<x乙,s甲2<s乙2 | B. | x甲>x乙,s甲2>s乙2 | ||
| C. | x甲>x乙,s甲2<s乙2 | D. | x甲<x乙,s甲2>s乙2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{,e}$) | B. | [$\frac{ln3}{3}$,$\frac{1}{,e}$) | C. | ($\frac{ln3}{3}$,$\frac{1}{,e}$) | D. | (0,$\frac{ln3}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-x-5 | B. | y=-x+3 | C. | y=-x-5或y=-x+3 | D. | 不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x+2)2+y2=16 | B. | (x+2)2+y2=20 | C. | (x+2)2+y2=25 | D. | (x+2)2+y2=36 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com