精英家教网 > 高中数学 > 题目详情
19.在平面直角坐标系xOy中,以(-2,0)为圆心且与直线mx+2y-2m-6=0(m∈R)相切的所有圆中,面积最大的圆的标准方程是(  )
A.(x+2)2+y2=16B.(x+2)2+y2=20C.(x+2)2+y2=25D.(x+2)2+y2=36

分析 直线mx+2y-2m-6=0(m∈R)恒过点(2,3),由以(-2,0)为圆心且与直线mx+2y-2m-6=0(m∈R)相切,得到圆的最大半径r=$\sqrt{(2+2)^{2}+(3-0)^{2}}$=5,由此能求出面积最大的圆的标准方程.

解答 解:直线mx+2y-2m-6=0(m∈R)转化为:
(x-2)m+2y-6=0,
由$\left\{\begin{array}{l}{x-2=0}\\{2y-6=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,
∴直线mx+2y-2m-6=0(m∈R)恒过点(2,3),
∵以(-2,0)为圆心且与直线mx+2y-2m-6=0(m∈R)相切,
∴圆的最大半径r=$\sqrt{(2+2)^{2}+(3-0)^{2}}$=5,
∴以(-2,0)为圆心且与直线mx+2y-2m-6=0(m∈R)相切的所有圆中,
面积最大的圆的标准方程是(x+2)2+y2=25.
故选:C.

点评 本题考查圆的标准方程的求法,考查直线方程、圆、两点间距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若点P(cosα,sinα)在直线y=-2x上,则4cos2α+2sinα•cosα-2=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xoy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,设曲线C参数方程为 $\left\{\begin{array}{l}{x=1+cosθ}\\{y=2+sinθ}\end{array}\right.$(θ为参数),直线l的极坐标方程为  3ρcosθ+4ρsinθ=2.
(Ⅰ)写出曲线C的普通方程和直线l的直角坐标方程
(Ⅱ)求曲线C上的动点到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平面直角坐标系中,点M的直角坐标是$(\sqrt{3},-1)$.若以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,则点M的极坐标可以是(  )
A.$(2,\frac{π}{6})$B.$(-2,\frac{5π}{6})$C.$(2,-\frac{5π}{6})$D.$(-2,-\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知,对于任意x∈R,ex≥ax+b均成立.
①若a=e,则b的最大值为0;
②在所有符合题意的a,b中,a-b的最小值为-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知正方形ABCD的边长为3,E为CD的中点,则$\overrightarrow{AE}•\overrightarrow{BD}$=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一个样本容量为20的样本数据,它们组成一个公差不为0的等差数列{an},若a2=6且前4项和为S4=28,则此样本数据的平均数和中位数分别为23,23.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x、y满足$\left\{\begin{array}{l}{x-y≤2}\\{x+y≤6}\\{x≥0,y≥0}\end{array}\right.$,则z=2x+y的最大值是10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知P为圆C:(x-2)2+(y-2)2=1上任一点,Q为直线l:x+y+2=0上任一点,O为原点,则$|\overrightarrow{OP}-\overrightarrow{OQ}|$的最小值为$\sqrt{2}-1$.

查看答案和解析>>

同步练习册答案