精英家教网 > 高中数学 > 题目详情
17.袋中有6个黄色、4个白色的乒乓球,做不放回抽样,每次任取1个球,取2次,则关于事件“直到第二次才取到黄色球”与事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率说法正确的是(  )
A.事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率都等于$\frac{2}{3}$
B.事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率都等于$\frac{4}{15}$
C.事件“直到第二次才取到黄色球”的概率等于$\frac{2}{3}$,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于$\frac{4}{15}$
D.事件“直到第二次才取到黄色球”的概率等于$\frac{4}{15}$,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于$\frac{2}{3}$

分析 设事件A表示“直到第二次才取到黄色球”,利用相互独立事件概率乘法公式能求出P(A);设事件B表示“第一次取得白球的情况下,第二次恰好取得黄球”,利用条件概率计算公式能求出P(B).

解答 解:袋中有6个黄色、4个白色的乒乓球,做不放回抽样,每次任取1个球,取2次,
设事件A表示“直到第二次才取到黄色球”,
事件B表示“第一次取得白球的情况下,第二次恰好取得黄球”,
则P(A)=$\frac{4}{10}×\frac{6}{9}$=$\frac{4}{15}$,
P(B)=$\frac{\frac{2}{5}×\frac{2}{3}}{\frac{2}{5}}$=$\frac{2}{3}$.
故选:D.

点评 本题考查概率的求法,考查相互独立事件概率乘法公式、条件概率计算公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,过点E(1,0)的直线与圆O:x2+y2=4相交于A、B两点,过点C(2,0)且与AB垂直的直线与圆O的另一交点为D.
(1)当点B坐标为(0,-2)时,求直线CD的方程;
(2)求四边形ABCD面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若圆x2+y2-2kx+2y+2=0(k>0)与两坐标轴无公共点,那么实数k的取值范围为(  )
A.-1<k<1B.1<k<$\sqrt{2}$C.1<k<2D.$\sqrt{2}$<k<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点$M(\frac{3π}{4},0)$对称,且在区间$[{0,\frac{π}{2}}]$上是单调函数,则ω的值是(  )
A.$\frac{2}{3}$B.2C.$\frac{2}{3}$或2D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知{an}是等比数列,那么下列结论错误的是(  )
A.${a_5}^2={a_3}•{a_7}$B.${a_5}^2={a_1}•{a_9}$
C.${a_n}^2={a_{n-1}}•{a_{n+1}}({n∈{N^*}})$D.${a_n}^2={a_{n-k}}•{a_{n+k}}({k∈{N^*},n>k>0})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,内角A、B、C的对边分别为a、b、c,若acosB+bcosA=2ccosC,a+b=6,则三角形ABC的面积S△ABC的最大值是(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{9\sqrt{3}}{2}$C.$\frac{9\sqrt{3}}{4}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)(x∈R)为奇函数,f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),则f(-5)=(  )
A.-$\frac{5}{2}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若点P(cosα,sinα)在直线y=-2x上,则4cos2α+2sinα•cosα-2=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xoy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,设曲线C参数方程为 $\left\{\begin{array}{l}{x=1+cosθ}\\{y=2+sinθ}\end{array}\right.$(θ为参数),直线l的极坐标方程为  3ρcosθ+4ρsinθ=2.
(Ⅰ)写出曲线C的普通方程和直线l的直角坐标方程
(Ⅱ)求曲线C上的动点到直线l距离的最小值.

查看答案和解析>>

同步练习册答案