精英家教网 > 高中数学 > 题目详情
12.已知{an}是等比数列,那么下列结论错误的是(  )
A.${a_5}^2={a_3}•{a_7}$B.${a_5}^2={a_1}•{a_9}$
C.${a_n}^2={a_{n-1}}•{a_{n+1}}({n∈{N^*}})$D.${a_n}^2={a_{n-k}}•{a_{n+k}}({k∈{N^*},n>k>0})$

分析 由题意利用等比数列的性质,逐一判断各个选项是否正确,从而得出结论.

解答 解:已知{an}是等比数列,∴根据等比数列的性质可得,${{a}_{5}}^{2}$=a3•a7,${{a}_{5}}^{2}$=a1•a9,${{a}_{n}}^{2}$=an-k•an+k (k∈N*,n>k>0),
故A、B、D都正确;
当n=1时,an-1=a0,${{a}_{n}}^{2}$=an-1•an+1 无意义,故C错误,
故选:C.

点评 本题主要考查等比数列的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若对任意的实数x,总存在y∈[2,3],使得不等式x2+xy+y2≥k(y-1)成立,则实数k的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和${S_n}={n^2}-4n$,其中n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}={2^{a_n}}+1$,求数列{bn}的前n项和Tn
(Ⅲ)若对于任意正整数n,都有$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}≤λ$,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.命题“?x0∈R,${x_0}^2-{x_0}+1≤0$”的否定为(  )
A.?x0∈R,${x_0}^2-{x_0}+1≤0$B.?x0∈R,${x_0}^2-{x_0}+1>0$
C.?x∈R,x2-x+1≤0D.?x∈R,x2-x+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$\overrightarrow{a}$=2(cosωx,cosωx),$\overrightarrow{b}$=(cosωx,$\sqrt{3}$sinωx)(其中0<ω<1),函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$,
(1)若直线x=$\frac{π}{3}$是函数f(x)图象的一条对称轴,先列表再作出函数f(x)在区间[-π,π]上的图象.
(2)求函数y=f(x),x∈[-π,π]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.袋中有6个黄色、4个白色的乒乓球,做不放回抽样,每次任取1个球,取2次,则关于事件“直到第二次才取到黄色球”与事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率说法正确的是(  )
A.事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率都等于$\frac{2}{3}$
B.事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率都等于$\frac{4}{15}$
C.事件“直到第二次才取到黄色球”的概率等于$\frac{2}{3}$,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于$\frac{4}{15}$
D.事件“直到第二次才取到黄色球”的概率等于$\frac{4}{15}$,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\frac{ln({x}^{2}+3x-4)}{x-2}$,求f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)满足当x∈(1,2)时,f(x-1)=2f($\frac{1}{x-1}$),当x∈(1,3]时,f(x)=lnx,若函数g(x)=$\frac{f(x)-ax}{x-1}$在区间[$\frac{1}{3}$,1)∪(1,3]上有三个不同的零点,则实数a的取值范围为(  )
A.(0,$\frac{1}{,e}$)B.[$\frac{ln3}{3}$,$\frac{1}{,e}$)C.($\frac{ln3}{3}$,$\frac{1}{,e}$)D.(0,$\frac{ln3}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若二次函数f(x)=ax2+bx+c(a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围;
(3)解关于x的不等式  (k+1)f(x)>kx+1.

查看答案和解析>>

同步练习册答案