精英家教网 > 高中数学 > 题目详情
5.若二次函数f(x)=ax2+bx+c(a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围;
(3)解关于x的不等式  (k+1)f(x)>kx+1.

分析 (1)由f(0)=1,求出c=1,根据f(x+1)-f(x)=2x,通过系数相等,从而求出a,b的值;
(2)f(x)>2x+m等价于x2-x+1>2x+m,即x2-3x+1-m>0,要使此不等式在[-1,-1]上恒成立,只需使函数g(x)=x2-3x+1-m在[-1,-1]的最小值大于0即可,求出g(x)的最小值即可.
(3)(k+1)f(x)>kx+1即(k+1)x2-(2k+1)x+k>0⇒(x-1)[(k+1)x-k]>0,分当k=-1,当k>-1,当k<-1 三种情况分别解不等式.

解答 (1)由f(0)=1得,c=1,∴f(x)=ax2+bx+1.又f(x+1)-f(x)=2x
∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,即2ax+a+b=2x,
∴$\left\{\begin{array}{l}{2a=2}\\{a+b=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=1}\\{b=-1}\end{array}\right.$…(5分)
.因此,f(x)=x2-x+1.…(4分)
(2)f(x)>2x+m等价于x2-x+1>2x+m,即x2-3x+1-m>0,要使此不等式在[-1,1]上恒成立,只需使函数g(x)=x2-3x+1-m在[-1,1]上的最小值大于0即可.
∵g(x)=x2-3x+1-m在[-1,1]上单调递减,
∴g(x)min=g(1)=-m-1,由-m-1>0得,m<-1.
因此满足条件的实数m的取值范围是(-∞,-1).                 …(8分)
(3)(k+1)f(x)>kx+1即(k+1)x2-(2k+1)x+k>0⇒(x-1)[(k+1)x-k]>0
当k=-1时,x-1>0,∴x∈(1,+∞)…(11分)
当k>-1时,$(x-1)({x-\frac{k}{k+1}})>0$∵$\frac{k}{k+1}=1-\frac{1}{k+1}<1∴x∈(-∞,\frac{k}{k+1})∪(1,+∞)$…(13分)
当k<-1时,$(x-1)({x-\frac{k}{k+1}})<0$∵$\frac{k}{k+1}=1-\frac{1}{k+1}>1∴x∈(1,\frac{k}{k+1})$…(15分)
综上:当k=-1时x∈(1,+∞)
当k>-1时,$x∈(-∞,\frac{k}{k+1})∪(1,+∞)$
当k<-1时,$x∈(1,\frac{k}{k+1})$…(16分)

点评 本题考查函数解析式求解的待定系数法,涉及恒成立和二次函数区间的最值,考查了含参数不等式的解法,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知{an}是等比数列,那么下列结论错误的是(  )
A.${a_5}^2={a_3}•{a_7}$B.${a_5}^2={a_1}•{a_9}$
C.${a_n}^2={a_{n-1}}•{a_{n+1}}({n∈{N^*}})$D.${a_n}^2={a_{n-k}}•{a_{n+k}}({k∈{N^*},n>k>0})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一张坐标纸上涂着圆E:(x+1)2+y2=8及点P(1,0),折叠此纸片,使P与圆周上某点P'重合,每次折叠都会留下折痕,设折痕与EP'的交点为M.
(1)求M的轨迹C的方程;
(2)直线l:y=kx+m与C的两个不同交点为A,B,且l与以EP为直径的圆相切,若$\overrightarrow{OA}•\overrightarrow{OB}∈[{\frac{2}{3},\frac{3}{4}}]$,求△ABO的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ln(1+x)(x>0),g(x)=$\frac{ax}{x+2}$.
(Ⅰ)求f(x)在x=0处的切线方程;
(Ⅱ)若f(x)>g(x)对x∈(0,+∞)恒成立,求a的取值范围;
(Ⅲ)n∈N*时,比较$g(1)+g(\frac{1}{2})+g(\frac{1}{3})+…+g(\frac{1}{n})$与f(n)的大小并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-x3+3x2+9x+a(a为常数).
(1)求函数f(x)的单调递减区间;
(2)若f(x)在区间[-2,2]上的最大值是20,求f(x)在该区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xoy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,设曲线C参数方程为 $\left\{\begin{array}{l}{x=1+cosθ}\\{y=2+sinθ}\end{array}\right.$(θ为参数),直线l的极坐标方程为  3ρcosθ+4ρsinθ=2.
(Ⅰ)写出曲线C的普通方程和直线l的直角坐标方程
(Ⅱ)求曲线C上的动点到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)是定义在R上的奇函数,且当x∈(-∞,0)时,f(x)-xf′(x)<0,若m=$\frac{f(\sqrt{3})}{\sqrt{3}}$,n=$\frac{f(ln\frac{1}{2})}{ln\frac{1}{2}}$,k=$\frac{f(lo{g}_{2}5)}{lo{g}_{2}5}$,则m,n,k的大小关系是n<m<k(用“<”连接).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知,对于任意x∈R,ex≥ax+b均成立.
①若a=e,则b的最大值为0;
②在所有符合题意的a,b中,a-b的最小值为-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设z=$\frac{1}{1-i}$(i为虚数单位),则|z|=(  )
A.2B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案