分析 (1)折痕为PP′的垂直平分线,则|MP|=|MP′|,推导出E的轨迹是以E、P为焦点的椭圆,且a=$\sqrt{2}$,c=1,由此能求出M的轨迹C的方程.
(2)l与以EP为直径的圆x2+y2=1相切,从而m2=k2+1,由$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx+m}\end{array}\right.$,得(1+2k2)x2+4kmx+2m2-2=0,由此利用根的判别式、韦达定理、向量的数量积、弦长公式、三角形面积公式,能求出△AOB的面积的取值范围.
解答 解:(1)折痕为PP′的垂直平分线,则|MP|=|MP′|,
由题意知圆E的半径为2$\sqrt{2}$,
∴|ME|+|MP|=|ME|+|MP′|=2$\sqrt{2}$>|EP|,
∴E的轨迹是以E、P为焦点的椭圆,且a=$\sqrt{2}$,c=1,
∴b2=a2-c2=1,
∴M的轨迹C的方程为$\frac{{x}^{2}}{2}+{y}^{2}$=1.
(2)l与以EP为直径的圆x2+y2=1相切,则O到l即直线AB的距离:
$\frac{|m|}{\sqrt{{k}^{2}+1}}$=1,即m2=k2+1,
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx+m}\end{array}\right.$,消去y,得(1+2k2)x2+4kmx+2m2-2=0,
∵直线l与椭圆交于两个不同点,
∴△=16k2m2-8(1+2k2)(m2-1)=8k2>0,k2>0,
设A(x1,y1),B(x2,y2),则${x}_{1}+{x}_{2}=-\frac{4km}{1+2{k}^{2}}$,${x}_{1}{x}_{2}=\frac{2{m}^{2}-2}{1+2{k}^{2}}$,
y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=$\frac{1-{k}^{2}}{1+2{k}^{2}}$,
又$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2=$\frac{1+{k}^{2}}{1+2{k}^{2}}$,∴$\frac{2}{3}≤\frac{1+{k}^{2}}{1+2{k}^{2}}≤\frac{3}{4}$,∴$\frac{1}{2}≤{k}^{2}≤1$,
${S}_{△AOB}=\frac{1}{2}×|AB|×1$
=$\frac{1}{2}×\sqrt{1+{k}^{2}}×\sqrt{(-\frac{4km}{1+2{k}^{2}})^{2}-4×\frac{2{m}^{2}-2}{1+2{k}^{2}}}$
=$\sqrt{\frac{2({k}^{4}+{k}^{2})}{4({k}^{4}+{k}^{2})+1}}$,
设μ=k4+k2,则$\frac{3}{4}≤μ≤2$,
∴${S}_{△AOB}=\sqrt{\frac{2μ}{4μ+1}}$=$\sqrt{\frac{1}{2}-\frac{1}{2(4μ+1)}}$,$μ∈[\frac{3}{4},2]$,
∵S△AOB关于μ在[$\frac{3}{4}$,2]单调递增,
∴$\frac{\sqrt{6}}{4}≤{S}_{△AOB}≤\frac{2}{3}$,∴△AOB的面积的取值范围是[$\frac{\sqrt{6}}{4}$,$\frac{2}{3}$].
点评 本题考查点的轨迹方程的求法,考查三角形面积的取值范围的求法,考查圆、椭圆、根的判别式、韦达定理、向量的数量积、弦长公式、三角形面积公式、换元法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{,e}$) | B. | [$\frac{ln3}{3}$,$\frac{1}{,e}$) | C. | ($\frac{ln3}{3}$,$\frac{1}{,e}$) | D. | (0,$\frac{ln3}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-x-5 | B. | y=-x+3 | C. | y=-x-5或y=-x+3 | D. | 不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com