精英家教网 > 高中数学 > 题目详情
9.设函数f(x)(x∈R)为奇函数,f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),则f(-5)=(  )
A.-$\frac{5}{2}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.5

分析 根据奇函数的心智以及条件求得f(2)的值,化简f(-5)为-2f(2)-f(1),从而得到它的值.

解答 解:函数f(x)(x∈R)为奇函数,f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),
取x=-1,可得f(1)=f(-1)+f(2)=-f(1)+f(2),∴f(2)=2f(1)=1,
则f(-5)=f(-3-2)=f(-3)+f(-2)=f(-2-1)+f(-2)=2f(-2)+f(-1)=-2f(2)-f(1)=-2×1-$\frac{1}{2}$=-$\frac{5}{2}$,
故选:A.

点评 本题主要考查函数的奇偶性的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,FD∥EA,且FD=$\frac{1}{2}$EA=1.则直线EB与平面ECF所成角的正弦值为$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.命题“?x0∈R,${x_0}^2-{x_0}+1≤0$”的否定为(  )
A.?x0∈R,${x_0}^2-{x_0}+1≤0$B.?x0∈R,${x_0}^2-{x_0}+1>0$
C.?x∈R,x2-x+1≤0D.?x∈R,x2-x+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.袋中有6个黄色、4个白色的乒乓球,做不放回抽样,每次任取1个球,取2次,则关于事件“直到第二次才取到黄色球”与事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率说法正确的是(  )
A.事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率都等于$\frac{2}{3}$
B.事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率都等于$\frac{4}{15}$
C.事件“直到第二次才取到黄色球”的概率等于$\frac{2}{3}$,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于$\frac{4}{15}$
D.事件“直到第二次才取到黄色球”的概率等于$\frac{4}{15}$,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\frac{ln({x}^{2}+3x-4)}{x-2}$,求f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图是某工厂对甲乙两个车间各10名工人生产的合格产品的统计结果的茎叶图.设甲、乙的中位数分别为x、x,甲、乙的方差分别为s2、s2,则(  )
A.x<x,s2<s2B.x>x,s2>s2
C.x>x,s2<s2D.x<x,s2>s2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)满足当x∈(1,2)时,f(x-1)=2f($\frac{1}{x-1}$),当x∈(1,3]时,f(x)=lnx,若函数g(x)=$\frac{f(x)-ax}{x-1}$在区间[$\frac{1}{3}$,1)∪(1,3]上有三个不同的零点,则实数a的取值范围为(  )
A.(0,$\frac{1}{,e}$)B.[$\frac{ln3}{3}$,$\frac{1}{,e}$)C.($\frac{ln3}{3}$,$\frac{1}{,e}$)D.(0,$\frac{ln3}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知圆C:(x+1)2+y2=32,直线l与一、三象限的角平分线垂直,且圆C上恰有三个点到直线l的距离为2$\sqrt{2}$,则直线l的方程为(  )
A.y=-x-5B.y=-x+3C.y=-x-5或y=-x+3D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知两个平面垂直,下列命题:
①一个平面内的已知直线必垂直于另一个平面内的任意一条直线.
②一个平面内的已知直线必垂直于另一个平面内的无数条直线.
③一个平面内的任一条直线必垂直于另一个平面.
④一个平面内垂直于交线的直线与另一个平面垂直.
其中正确命题的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

同步练习册答案