精英家教网 > 高中数学 > 题目详情
2.已知两个平面垂直,下列命题:
①一个平面内的已知直线必垂直于另一个平面内的任意一条直线.
②一个平面内的已知直线必垂直于另一个平面内的无数条直线.
③一个平面内的任一条直线必垂直于另一个平面.
④一个平面内垂直于交线的直线与另一个平面垂直.
其中正确命题的个数是(  )
A.3B.2C.1D.0

分析 考察正方体中互相垂直的两个平面:面A1ABB1和面ABCD,利用数形结合思想能求出结果.

解答 解:考察正方体中互相垂直的两个平面:面A1ABB1和面ABCD:
对于①:一个平面内的已知直线不一定垂直于另一个平面的任意一条直线.如图中A1B与AB不垂直;
对于②:一个平面内的已知直线必垂直于另一个平面的无数条直线.这一定是正确的.
如图中,已知直线A1B,在平面ABCD中,所有与BC平行直线都与它垂直;
对于③:一个平面内的任一条直线不一定垂直于另一个平面;如图中:A1B;
对于④:过一个平面内任意一点作交线的垂线,利用面面垂直的性质,可知垂线必垂直于另一个平面.
故选:B.

点评 本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,考查化归与思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设函数f(x)(x∈R)为奇函数,f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),则f(-5)=(  )
A.-$\frac{5}{2}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ln(1+x)(x>0),g(x)=$\frac{ax}{x+2}$.
(Ⅰ)求f(x)在x=0处的切线方程;
(Ⅱ)若f(x)>g(x)对x∈(0,+∞)恒成立,求a的取值范围;
(Ⅲ)n∈N*时,比较$g(1)+g(\frac{1}{2})+g(\frac{1}{3})+…+g(\frac{1}{n})$与f(n)的大小并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xoy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,设曲线C参数方程为 $\left\{\begin{array}{l}{x=1+cosθ}\\{y=2+sinθ}\end{array}\right.$(θ为参数),直线l的极坐标方程为  3ρcosθ+4ρsinθ=2.
(Ⅰ)写出曲线C的普通方程和直线l的直角坐标方程
(Ⅱ)求曲线C上的动点到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)是定义在R上的奇函数,且当x∈(-∞,0)时,f(x)-xf′(x)<0,若m=$\frac{f(\sqrt{3})}{\sqrt{3}}$,n=$\frac{f(ln\frac{1}{2})}{ln\frac{1}{2}}$,k=$\frac{f(lo{g}_{2}5)}{lo{g}_{2}5}$,则m,n,k的大小关系是n<m<k(用“<”连接).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平面直角坐标系中,点M的直角坐标是$(\sqrt{3},-1)$.若以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,则点M的极坐标可以是(  )
A.$(2,\frac{π}{6})$B.$(-2,\frac{5π}{6})$C.$(2,-\frac{5π}{6})$D.$(-2,-\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知,对于任意x∈R,ex≥ax+b均成立.
①若a=e,则b的最大值为0;
②在所有符合题意的a,b中,a-b的最小值为-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一个样本容量为20的样本数据,它们组成一个公差不为0的等差数列{an},若a2=6且前4项和为S4=28,则此样本数据的平均数和中位数分别为23,23.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\sqrt{{x}^{2}-2x-3}$+ln(x+1)的定义域为[3,+∞).

查看答案和解析>>

同步练习册答案