| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{9\sqrt{3}}{2}$ | C. | $\frac{9\sqrt{3}}{4}$ | D. | $\frac{9}{4}$ |
分析 由已知条件结合正弦定理可得cosC,求出sinC,由a+b=6,利用基本不等式可得ab≤9,(当且仅当a=b=3成立),由三角形面积公式即可得答案.
解答 解:由acosB+bcosA=2ccosC,
得sinAcosB+sinBcosA=2sinCcosC,
即sin(A+B)=sinC=2sinCcosC,
∴cosC=$\frac{1}{2}$,$sinC=\frac{\sqrt{3}}{2}$.
∵a+b=6,可得:6≥2$\sqrt{ab}$,解得:ab≤9,(当且仅当a=b=3成立),
∴S△ABC=$\frac{1}{2}absinC$≤$\frac{1}{2}×9×\frac{\sqrt{3}}{2}=\frac{9\sqrt{3}}{4}$,(当且仅当a=b=3成立).
故选:C.
点评 本题主要考查了正弦定理,三角形面积公式,基本不等式的应用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{4}+{y^2}=1$ | B. | $\frac{x^2}{4}+{y^2}=1$或${x^2}+\frac{y^2}{4}=1$ | ||
| C. | x2+4y2=1 | D. | $\frac{x^2}{4}+{y^2}=1$或$\frac{x^2}{4}+\frac{y^2}{16}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{-\frac{1}{2},1}]$ | B. | $[{-1,\frac{1}{2}}]$ | C. | $({-∞,-\frac{1}{2}}]∪[{1,+∞})$ | D. | $({-∞,-1}]∪[{\frac{1}{2},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率都等于$\frac{2}{3}$ | |
| B. | 事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率都等于$\frac{4}{15}$ | |
| C. | 事件“直到第二次才取到黄色球”的概率等于$\frac{2}{3}$,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于$\frac{4}{15}$ | |
| D. | 事件“直到第二次才取到黄色球”的概率等于$\frac{4}{15}$,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于$\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x甲<x乙,s甲2<s乙2 | B. | x甲>x乙,s甲2>s乙2 | ||
| C. | x甲>x乙,s甲2<s乙2 | D. | x甲<x乙,s甲2>s乙2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com