精英家教网 > 高中数学 > 题目详情
13.离心率为$\frac{{\sqrt{3}}}{2}$,且过点(2,0)的椭圆的标准方程是(  )
A.$\frac{x^2}{4}+{y^2}=1$B.$\frac{x^2}{4}+{y^2}=1$或${x^2}+\frac{y^2}{4}=1$
C.x2+4y2=1D.$\frac{x^2}{4}+{y^2}=1$或$\frac{x^2}{4}+\frac{y^2}{16}=1$

分析 根据题意,按椭圆的焦点在x轴与y轴上不同分2种情况讨论,分别求出椭圆的方程,综合即可得答案.

解答 解:根据题意,分2种情况讨论:
①、若要求椭圆的焦点在x轴上,
若椭圆过点(2,0),则a=2,
又由其离心率为$\frac{{\sqrt{3}}}{2}$,即e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,则c=$\sqrt{3}$,
b=$\sqrt{{a}^{2}-{c}^{2}}$=1,
此时椭圆的方程为:$\frac{{x}^{2}}{4}$+y2=1;
②、若要求椭圆的焦点在y轴上,
若椭圆过点(2,0),则b=2,
又由其离心率为$\frac{{\sqrt{3}}}{2}$,即e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,则c=$\frac{\sqrt{3}}{2}$a,
b2=a2-c2=a2-$\frac{3{a}^{2}}{4}$=$\frac{{a}^{2}}{4}$=4,
即a2=16,
此时椭圆的方程为:$\frac{{y}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1;
故要求椭圆的方程为:$\frac{{x}^{2}}{4}$+y2=1或$\frac{{y}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1,
故选:D.

点评 本题考查椭圆的标准方程,注意要先分析明确椭圆的焦点的位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.不等式$\frac{3x}{2x+1}≤1$的解集为(  )
A.(-∞,1]B.$[{-\frac{1}{2},1}]$C.$({-\frac{1}{2},1}]$D.$({-∞,-\frac{1}{2}})∪[{1,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某学校为了调查喜欢语文学科与性别的关系,随机调查了一些学生情况,具体数据如表:
调查统计不喜欢语文喜欢语文
1310
720
为了判断喜欢语文学科是否与性别有关系,根据表中的数据,得到K2的观测值k=$\frac{50×(13×20-10×7)2}{23×27×20×30}$≈4.844,因为k≥3.841,根据下表中的参考数据:
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
判定喜欢语文学科与性别有关系,那么这种判断出错的可能性为(  )
A.95%B.50%C.25%D.5%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x0是函数$f(x)={(\frac{1}{2})^x}+\frac{1}{x}$的一个零点,且x1∈(-∞,x0),x2∈(x0,0),则(  )
A.f(x1)<0,f(x2)<0B.f(x1)>0,f(x2)>0C.f(x1)<0,f(x2)>0D.f(x1)>0,f(x2)<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若圆x2+y2-2kx+2y+2=0(k>0)与两坐标轴无公共点,那么实数k的取值范围为(  )
A.-1<k<1B.1<k<$\sqrt{2}$C.1<k<2D.$\sqrt{2}$<k<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.公差为正数的等差数列{an}的前n项和为Sn,S3=18,且已知a1、a4的等比中项是6,求S10=(  )
A.145B.165C.240D.600

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点$M(\frac{3π}{4},0)$对称,且在区间$[{0,\frac{π}{2}}]$上是单调函数,则ω的值是(  )
A.$\frac{2}{3}$B.2C.$\frac{2}{3}$或2D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,内角A、B、C的对边分别为a、b、c,若acosB+bcosA=2ccosC,a+b=6,则三角形ABC的面积S△ABC的最大值是(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{9\sqrt{3}}{2}$C.$\frac{9\sqrt{3}}{4}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知极坐标系的极点为平面直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,曲线C的直角坐标方程为(x+1)2+(y-1)2=2,直线l过点(-1,0),且斜率为$\frac{1}{2}$,射线OM的极坐标方程为θ=$\frac{3π}{4}$.
(1)求曲线C和直线l的极坐标方程;
(2)已知射线OM与曲线C的交点为O,P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

同步练习册答案