精英家教网 > 高中数学 > 题目详情
12.函数f(x)=sinx的图象与g(x)=cosx的图象关于某条直线对称,则这条直线是x=$\frac{π}{4}$.

分析 y=f(x)关于直线x=a对称的函数解析式为y=f(2a-x),从而可以求值.

解答 解:设这条直线是x=a,
∵函数f(x)=sinx的图象与g(x)=cosx的图象关于x=a对称,
∴sin(2a-x)=cosx,即有cos[$\frac{π}{2}$-(2a-x)]=cosx,
∴可解得$\frac{π}{2}$-(2a-x)=x+2kπ,k∈Z,故有,a=$\frac{π}{4}$-kπ,k∈Z,
∴当k=0时,a=$\frac{π}{4}$,
故答案为:x=$\frac{π}{4}$.

点评 本题主要考查了正弦函数的图象,余弦函数的图象和性质,熟悉对称变换是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知实系数二次函数f(x)与g(x)满足3f(x)+g(x)=0和f(x)-g(x)=0都有双重实根,方程f(x)=0有两个不同实根,求证:方程g(x)=0没有实根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ln($\sqrt{1+9{x}^{2}}$-3x)+1,计算f(lg2)+f(lg$\frac{1}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知偶函数f(x)对?x∈R,都有f(x-2)=-f(x),且当x∈[-1,0]时,f(x)=2x,则f(2013)=(  )
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(1+cosx),则当x∈(-∞,0)时,f(x)=x(1+cosx).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则|$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$|的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=$\frac{\sqrt{1-{x}^{2}}}{2+x}$的值域是[0,$\frac{\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知C为圆x2+y2=4上一点,A(-2,0),B(2,0),连接AC,BC分别交直线x=3与P,Q两点,M为PQ中点,求证:以PQ为直径的圆经过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.f(x)=$\frac{1}{{x}^{2}-1}$的递增区间为(-∞,-1),和[-1,0).

查看答案和解析>>

同步练习册答案