精英家教网 > 高中数学 > 题目详情

【题目】已知函数,且,则 的值(

A. 恒为正数 B. 恒等于零

C. 恒为负数 D. 可能大于零,也可能小于零

【答案】C

【解析】

根据函数的解析式可得函数是奇函数,并且根据函数解析式可得函数是减函数,所以根据题意α+β>0,β+γ>0,γ+α>0,可得α>﹣β,β>﹣γ,γ>﹣α,进而结合函数的奇偶性与函数的单调性即可得到答案.

由题意可得:函数f(x)=﹣x﹣x3

所以函数的定义域为R,并且有f(﹣x)=x+x3=﹣f(x)

所以函数f(x)是定义域内的奇函数.

因为﹣x是减函数,﹣x3也是减函数所以函数f(x)=﹣x﹣x3R上是减函数.

因为实数α、β、γ满足α+β>0,β+γ>0,γ+α>0,

所以α>﹣β,β>﹣γ,γ>﹣α,

所以f(α)<f(﹣β)=﹣f(β)…①,

f(β)<f(﹣γ)=﹣f(γ)…②,

f(γ)<f(﹣α)=﹣f(α)…③,

①+②+③并且整理可得:f(α)+f(β)+f(γ)<0.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】先后抛掷两枚大小相同的骰子.

1)求点数之和出现7点的概率;
2)求出现两个6点的概率;

(3)求点数之和能被3整除的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过坐标原点的方程为

(1)当直线的斜率为与圆相交所得的弦长

(2)设直线与圆交于两点的中点求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)在R上的导函数为f'(x),对于任意的实数x,都有f'(x)+2017<4034x,若f(t+1)<f(﹣t)+4034t+2017,则实数t的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小型企业甲产品生产的投入成本(单位:万元)与产品销售收入(单位:万元)存在较好的线性关系,下表记录了最近5次产品的相关数据.

(投入成本)

7

10

11

15

17

(销售收入)

19

22

25

30

34

1)求关于的线性回归方程

2)根据(1)中的回归方程,判断该企业甲产品投入成本20万元的毛利率更大还是投入成本24万元的毛利率更大()?

相关公式 .

【答案】1.2投入成本20万元的毛利率更大.

【解析】试题分析:(1)由回归公式,解得线性回归方程为;(2)当 对应的毛利率为 对应的毛利率为故投入成本20万元的毛利率更大。

试题解析:

1

关于的线性回归方程为.

2)当 对应的毛利率为

对应的毛利率为

故投入成本20万元的毛利率更大.

型】解答
束】
21

【题目】已知椭圆的一个焦点为.设椭圆的焦点恰为椭圆短轴的顶点且椭圆过点.

(1)求的方程及离心率

(2)若直线与椭圆交于两点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人的各科成绩如图中的茎叶图所示,则下列说法不正确的是(  )

A. 甲、乙两人的各科平均分相同

B. 甲各科成绩的中位数是83,乙各科成绩的中位数是85

C. 甲各科成绩比乙各科成绩稳定

D. 甲各科成绩的众数是89,乙各科成绩的众数为87

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下三个关于圆锥曲线的命题中:

设A、B为两个定点,K为非零常数,若|PA|-|PB|=K,则动点P的轨迹是双曲线.

方程的两根可分别作为椭圆和双曲线的离心率.

双曲线与椭圆有相同的焦点.

④已知抛物线,以过焦点的一条弦AB为直径作圆,则此圆与准线相切.

其中真命题为_________(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2y2+2x-4y+3=0.

(1)若直线l过点(-2,0)且被圆C截得的弦长为2,求直线l的方程;

(2)从圆C外一点P向圆C引一条切线,切点为MO为坐标原点,且|PM|=|PO|,求|PM|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC,满足bcosC+ bsinC﹣a﹣c=0
(1)求角B的值;
(2)若a=2,且AC边上的中线BD长为 ,求△ABC的面积.

查看答案和解析>>

同步练习册答案