精英家教网 > 高中数学 > 题目详情

【题目】数列中,.项和满足.

1)求(用表示);

2)求证:数列是等比数列;

3)若,现按如下方法构造项数为的有穷数列,当时,;当时,.记数列的前项和,试问:是否能取整数?若能,请求出的取值集合:若不能,请说明理由.

【答案】1

2)证明见详解.

3能取整数,此时的取值集合为.

【解析】

1)利用递推关系式,,通过,求出即可.

2)递推关系式转化为:,化简推出数列是等比数列.

3)由,求出,求出,得到通项公式,然后求解的分母与分子,讨论要使取整数,为整数,推出的取值集合为,取整数

解:(1)令,,

,代入,.

解得:.

2)由

,

化简得,,

是等比数列.

3)由,,

是等比数列,

,

,

①当,

依次为,

.

②当,

,

,

,

要使取整数,为整数,

,,

,要么都为整数,要么都不是整数,

所以当且仅当为奇数时,为整数,

的取值集合为,取整数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校为了解学生对食堂伙食的满意程度,组织学生给食堂打分(分数为整数,满分100分),从中随机抽取一个容量为的样本,发现所有数据均在内.现将这些分数分成以下组:,并画出了样本的频率分布直方图,部分图形如图所示.观察图形,回答下列问题:

(1)算出第三组的频数,并补全频率分布直方图;

(2)请根据频率分布直方图,估计样本的众数和平均数,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,当时, .

1)直接写出函数的增区间(不需要证明);

(2)求出函数 的解析式;

3)若函数 求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为若存在闭区间使得函数满足:(1)上是单调函数;(2)上的值域是则称区间是函数和谐区间,下列结论错误的是(

A.函数存在和谐区间

B.函数不存在和谐区间

C.函数存在和谐区间

D.函数)不存在和谐区间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,(其中 为自然对数的底数, …….

1)令,若对任意的恒成立,求实数的值;

2)在(1)的条件下,设为整数,且对于任意正整数 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】历史数据显示:某城市在每年的3月11日—3月15日的每天平均气温只可能是-5℃,-6℃,-7℃,-8℃中的一个,且等可能出现.

(Ⅰ)求该城市在3月11日—3月15日这5天中,恰好出现两次-5℃,一次-8℃的概率;

(Ⅱ)若该城市的某热饮店,随平均气温的变化所售热饮杯数如下表

平均气温t

-5℃

-6℃

-7℃

-8℃

所售杯数y

19

22

24

27

根据以上数据,求关于的线性回归直线方程.

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某产品的年固定成本为250万元,每生产千件,需另投入成本(万元),若年产量不足千件, 的图像是如图的抛物线,此时的解集为,且的最小值是,若年产量不小于千件, ,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完;

(1)写出年利润(万元)关于年产量(千件)的函数解析式;

(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】支付宝和微信支付是目前市场占有率较高的支付方式,某第三方调研机构对使用这两种支付方式的人数作了对比.从全国随机抽取了100个地区作为研究样本,计算了各个地区样本的使用人数,其频率分布直方图如图.

(1)记A表示事件“微信支付人数低于50千人”,估计A的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为支付人数与支付方式有关;

支付人数50千人

支付人数50千人

总计

微信支付

支付宝支付

总计

(3)根据支付人数的频率分布直方图,对两种支付方式的优劣进行比较.

附:

P(K2≥K)

0.050

0.010

0.001

K

3.841

6.635

10.828

K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工厂生产某种产品,当年产量在150吨至250吨时,每年的生产成本万元与年产量吨之间的关系可可近似地表示为.

1)若每年的生产总成本不超过2000万元,求年产量的取值范围;

2)求年产量为多少吨时,每吨的平均成本最低,并求每吨的最低成本.

查看答案和解析>>

同步练习册答案