精英家教网 > 高中数学 > 题目详情

【题目】设函数,且)是定义域为R的奇函数.

1)求t的值;

2)若,求使不等式对一切恒成立的实数k的取值范围;

3)若函数的图象过点,是否存在正数m),使函数上的最大值为0,若存在,求出m的值;若不存在,请说明理由.

【答案】1,(2,(3)不存在,理由见解析

【解析】

1)结合函数奇偶性,利用可求;

2)根据可得,结合奇偶性和单调性把所求解的不等式转化为二次不等式,然后进行求解;

3)根据函数图象过点可得,利用换元法进行求解.

1是定义域为R的奇函数,

;经检验知符合题意.

2)由(1)得

,又

为奇函数,

R上的增函数,

对一切恒成立,即对一切恒成立,

解得.

3)函数的图象过点

,假设存在正数m,且符合题意,

,记

函数上的最大值为0

i)若时,则函数有最小值为1

由于对称轴

,不合题意.

ii)若时,则函数上恒成立,且最大值为1,最小值大于0

而此时,又

无意义,

所以应舍去;

m无解,

综上所述:故不存在正数m,使函数上的最大值为0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图在四面体中,是边长为2的等边三角形,为直角三角形,其中为直角顶点,.分别是线段上的动点,且四边形为平行四边形.

1)求证:平面平面

2)试探究当二面角增加到90°的过程中,线段在平面上的投影所扫过的平面区域的面积;

3)设,且为等腰三角形,当为何值时,多面体的体积恰好为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线与直线平行,求的值;

(2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某地有三家工厂,分别位于矩形ABCD的顶点AB以及CD的中点P处,已知AB=20kmCB=10km,为了处理三家工厂的污水,现要在矩形ABCD(含边界),且与AB等距离的一点O处建造一个污水处理厂,并铺设排污管道AOBOOP,设排污管道的总长为km

(I),将表示成的函数关系式;

(II)确定污水处理厂的位置,使三条排污管道的总长度最短,并求出最短值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线 与椭圆有且只有一个公共点.

(Ⅰ)求椭圆的方程及点的坐标;

(Ⅱ)设是坐标原点,直线平行于,与椭圆交于不同的两点,且与直线交于点,证明:存在常数,使得,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P—ABCD中,PA⊥平面ABCD,∠DAB=∠ADC=90°,DC=AB,F,M分别是线段PC,PB的中点.

(1)在线段AB上找出一点N,使得平面CMN∥平面PAD,并给出证明过程;

(2)若PA=AB,DC=AD,求二面角C—AF—D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】依据黄河济南段8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图()所示:依据济南的地质构造,得到水位与灾害等级的频率分布条形图如图()所示.

(I)以此频率作为概率,试估计黄河济南段在8月份发生I级灾害的概率;

(Ⅱ)黄河济南段某企业,在3月份,若没受1、2级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.

现此企业有如下三种应对方案:

试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3-3ax,g(x)=bx2+clnx且g(x)在点(1,g(1))处的切线方程为2y-1=0.

(1)求g(x)的解析式;

(2)设函数G(x)=若方程G(x)=a2有且仅有四个解求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则下列判断正确的是(

A.为奇函数

B.对任意,,则有

C.对任意,则有

D.若函数有两个不同的零点,则实数m的取值范围是

查看答案和解析>>

同步练习册答案