10£®ÒÑÖªº¯Êýf£¨x£©=2sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬0£¼|¦Õ|£¼$\frac{¦Ð}{2}$£©µÄͼÏóÉÏ£¬Ö±Ïßx=x1£¬x=x2ÊÇy=f£¨x£©Í¼ÏóµÄÈÎÒâÁ½Ìõ¶Ô³ÆÖᣬÇÒ|x1-x2|µÄ×îСֵΪ$\frac{¦Ð}{2}$£®
£¨I£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨II£©ÉèA={x|$\frac{¦Ð}{4}$¡Üx¡Ü$\frac{¦Ð}{2}$}£¬B={x||f£¨x£©-m|£¼1}£¬ÈôA⊆B£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨III£©ÈôÒÑÖªcos¦Á+$\frac{1}{2}$f£¨$\frac{¦Á}{2}$+$\frac{¦Ð}{6}$£©=$\frac{2}{3}$£¬Çó$\frac{\sqrt{2}sin£¨2¦Á-\frac{¦Ð}{4}£©+1}{1+tan¦Á}$µÄÖµ£®

·ÖÎö £¨I£©ÓÉÌõ¼þÀûÓÃÕýÏÒº¯ÊýµÄÖÜÆÚÐÔÇóµÃ¦Ø£¬ÔÙ°ÑÒÑÖªµãµÄ×ø±ê´úÈëÇóµÃ¦Õ£¬´Ó¶øµÃµ½º¯Êýf£¨x£©½âÎöʽ£¬ÔÙ¸ù¾ÝÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔÇóµÃº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£®
£¨II£©µ±x¡ÊA£¬ÇóµÃf£¨x£©¡Ê[1£¬2]£¬ÔÙ¸ù¾ÝA⊆B£¬¿ÉµÃ $\left\{\begin{array}{l}{m-1¡Ü1}\\{m+1¡Ý2}\end{array}\right.$£¬´Ó¶øÇóµÃmµÄ·¶Î§£®
£¨III£©»¯¼òÌõ¼þÇóµÃ cos¦Á+sin¦Á=$\frac{2}{3}$£¬Æ½·½¿ÉµÃsin¦Ácos¦ÁµÄÖµ£¬ÔÙ»¯¼òÒªÇóµÄʽ×Ó£¬°ÑÕâÁ½¸öÖµ´úÈ룬¿ÉµÃÒªÇóʽ×ÓµÄÖµ£®

½â´ð ½â£º£¨I£©ÓÉÌâÒâ¿ÉµÃº¯ÊýµÄÖÜÆÚΪ$\frac{2¦Ð}{¦Ø}$=2¡Á$\frac{¦Ð}{2}$£¬ÇóµÃ¦Ø=2£®Ôٰѵ㣨$\frac{5¦Ð}{12}$£¬2£©´úÈ뺯Êýf£¨x£©=2sin£¨2x+¦Õ£©£¬
¿ÉµÃsin£¨2¡Á$\frac{5¦Ð}{12}$+¦Õ£©=1£¬¹Ê2¡Á$\frac{5¦Ð}{12}$+¦Õ=2k¦Ð+$\frac{¦Ð}{2}$£¬k¡Êz£®
ÔÙ½áºÏ£¬0£¼|¦Õ|£¼$\frac{¦Ð}{2}$£¬¿ÉµÃ¦Õ=-$\frac{¦Ð}{3}$£¬f£¨x£©=2sin£¨2x-$\frac{¦Ð}{3}$£©£®
Áî2k¦Ð-$\frac{¦Ð}{2}$¡Ü2x-$\frac{¦Ð}{3}$¡Ü2k¦Ð+$\frac{¦Ð}{2}$£¬k¡Êz£¬ÇóµÃk¦Ð-$\frac{¦Ð}{12}$¡Üx¡Ük¦Ð+$\frac{5¦Ð}{12}$£¬
¹Êº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ[k¦Ð-$\frac{¦Ð}{12}$£¬k¦Ð+$\frac{5¦Ð}{12}$]£¬k¡Êz£®
£¨II£©¡ßA={x|$\frac{¦Ð}{4}$¡Üx¡Ü$\frac{¦Ð}{2}$}£¬B={x||f£¨x£©-m|£¼1}={x|m-1¡Üf£¨x£©¡Üm+1}£¬
¶øµ±$\frac{¦Ð}{4}$¡Üx¡Ü$\frac{¦Ð}{2}$ʱ£¬2x-$\frac{¦Ð}{3}$¡Ê[$\frac{¦Ð}{6}$£¬$\frac{2¦Ð}{3}$]£¬¼´f£¨x£©¡Ê[1£¬2]£¬
¸ù¾ÝA⊆B£¬¡à$\left\{\begin{array}{l}{m-1¡Ü1}\\{m+1¡Ý2}\end{array}\right.$£¬¡à1¡Üm¡Ü2£®
£¨III£©¡ßcos¦Á+$\frac{1}{2}$f£¨$\frac{¦Á}{2}$+$\frac{¦Ð}{6}$£©=cos¦Á+sin[2£¨$\frac{¦Á}{2}$+$\frac{¦Ð}{6}$£©-$\frac{¦Ð}{3}$]=cos¦Á+sin¦Á=$\frac{2}{3}$£¬Æ½·½¿ÉµÃsin¦Ácos¦Á=-$\frac{5}{18}$£®
¡à$\frac{\sqrt{2}sin£¨2¦Á-\frac{¦Ð}{4}£©+1}{1+tan¦Á}$=$\frac{\sqrt{2}•cos¦Á£¨\frac{\sqrt{2}}{2}sin2¦Á-\frac{\sqrt{2}}{2}cos2¦Á£©+cos¦Á}{cos¦Á+sin¦Á}$=$\frac{cos¦Á£¨sin2¦Á-cos2¦Á+1£©}{\frac{2}{3}}$=$\frac{3}{2}$•cos¦Á£¨2sin¦Ácos¦Á+2sin2¦Á£©
=3sin¦Ácos¦Á£¨cos¦Á+sin¦Á£©=3¡Á£¨-$\frac{5}{18}$£©¡Á$\frac{2}{3}$=-$\frac{5}{9}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÕýÏÒº¯Êýµ¥µ÷ÐÔ¡¢ÖÜÆÚÐÔ¡¢¶¨ÒåÓòºÍÖµÓò£¬Èý½ÇºãµÈ±ä»»£¬¼¯ºÏ¼äµÄ²»º¬¹ØÏµ£¬ÌåÏÖÁËת»¯µÄÊýѧ˼Ï룬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=ax2+ln£¨x+1£©£®
£¨1£©µ±x¡Ê[0£¬+¡Þ£©Ê±£¬º¯Êýy=f£¨x£©Í¼ÏóÉϵĵ㶼ÔÚ$\left\{\begin{array}{l}x¡Ý0\\ y-x¡Ü0\end{array}\right.$Ëù±íʾµÄÆ½ÃæÇøÓòÄÚ£¬ÇóʵÊýaµÄȡֵ·¶Î§£®
£¨2£©ÇóÖ¤£º$£¨1+\frac{2}{2¡Á3}£©£¨1+\frac{4}{3¡Á5}£©¡­[1+\frac{2^n}{{£¨{2^{n-1}}+1£©£¨{2^n}+1£©}}]£¼e$£¬£¨ÆäÖÐn¡ÊN*£¬eÊÇ×ÔÈ»¶ÔÊýµÄµ×£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªx¡ÊR£¬Èô¡°4-2a¡Üx¡Üa+3¡±ÊÇ¡°x2-4x-12¡Ü0¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇa£¾3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖª$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬$\overrightarrow{c}$ÊÇÍ¬Ò»Æ½ÃæÄÚµÄÈý¸öÏòÁ¿£¬ÆäÖÐ$\overrightarrow{a}$=£¨1£¬2£©£®
£¨1£©Èô|$\overrightarrow{c}$|=2$\sqrt{5}$£¬ÇÒ$\overrightarrow{c}¡Î\overrightarrow{a}$£¬Çó$\overrightarrow{c}$µÄ×ø±ê£»
£¨2£©Èô|$\overrightarrow{b}$|=$\frac{\sqrt{5}}{2}$£¬ÇÒ£¨$\overrightarrow{a}+2\overrightarrow{b}$£©$•£¨2\overrightarrow{a}-\overrightarrow{b}£©$=$\frac{15}{4}$£¬Çó$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½Ç¦È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}$£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôòf£¨x£©=sin£¨2x-$\frac{¦Ð}{6}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=-x3+ax2+bx+cÔÚ£¨-¡Þ£¬0£©ÉÏÊǼõº¯Êý£¬ÔÚ£¨0£¬1£©ÉÏÊÇÔöº¯Êý£¬º¯Êýf£¨x£©ÔÚRÉÏÓÐÈý¸öÁãµã£¬ÇÒ1ÊÇÆäÖÐÒ»¸öÁãµã£®
£¨1£©ÇóbµÄÖµ£»
£¨2£©ÇócµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÏÂÁÐÇóµ¼ÔËËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®£¨x+$\frac{1}{x}$£©¡ä=1+$\frac{1}{{x}^{2}}$B£®$£¨\frac{{e}^{x}}{x}£©¡ä$=$\frac{{e}^{x}+x{e}^{x}}{{x}^{2}}$
C£®£¨x2sinx£©¡ä=2xcosxD£®£¨log2x£©¡ä=$\frac{1}{xln2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªËæ»ú±äÁ¿X·þ´Ó¶þÏî·Ö²¼X¡«B£¨6£¬$\frac{1}{3}$£©£¬ÔòP£¨X=2£©µÈÓÚ$\frac{80}{243}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒòÖ¸Êýº¯Êýy=ax£¨a£¾0ÇÒa¡Ù1£©ÊÇÔöº¯Êý£¨´óǰÌᣩ£¬¶øy=£¨$\frac{1}{3}$£©xÊÇÖ¸Êýº¯Êý£¨Ð¡Ç°Ìᣩ£¬ËùÒÔy=£¨$\frac{1}{3}$£©xÊÇÔöº¯Êý£¨½áÂÛ£©£¬ÉÏÃæÍÆÀíµÄ´íÎóÊÇ£¨¡¡¡¡£©
A£®´óǰÌá´íÎóµ¼Ö½áÂÛ´íB£®Ð¡Ç°Ìá´íµ¼Ö½áÂÛ´í
C£®ÍÆÀíÐÎʽ´íÎóµ¼Ö½áÂÛ´íD£®´óǰÌáºÍСǰÌá¶¼´íÎóµ¼Ö½áÂÛ´í

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸