设定义域为
的函数![]()
(Ⅰ)在平面直角坐标系内作出函数
的图象,并指出
的单调区间(不需证明);
(Ⅱ)若方程
有两个解,求出
的取值范围(只需简单说明,不需严格证明).
(Ⅲ)设定义为
的函数
为奇函数,且当
时,
求
的解析式.![]()
科目:高中数学 来源: 题型:解答题
已知函数f(x)=2x-
,x∈(0,1].
(1)当a=-1时,求函数y=f(x)的值域;
(2)若函数y=f(x)在x∈(0,1]上是减函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=loga(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点对称的点Q的轨迹恰好是函数f(x)的图象.
(1)写出函数g(x)的解析式;
(2)当x∈[0,1)时总有f(x)+g(x)≥m成立,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,
.
(1)若
,判断函数
的奇偶性,并加以证明;
(2)若函数
在
上是增函数,求实数
的取值范围;
(3)若存在实数
使得关于
的方程
有三个不相等的实数根,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(其中
是实数常数,
)
(1)若
,函数
的图像关于点(—1,3)成中心对称,求
的值;
(2)若函数
满足条件(1),且对任意
,总有
,求
的取值范围;
(3)若b=0,函数
是奇函数,
,
,且对任意
时,不等式
恒成立,求负实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x3+ax-2,(a
R).
(l)若f(x)在区间(1,+
)上是增函数,求实数a的取值范围;
(2)若
,且f(x0)=3,求x0的值;
(3)若
,且在R上是减函数,求实数a的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com