精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2x-,x∈(0,1].
(1)当a=-1时,求函数y=f(x)的值域;
(2)若函数y=f(x)在x∈(0,1]上是减函数,求实数a的取值范围.

(1)[2,+∞)(2)(-∞,-2]

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数时取得最大值4.
(1)求的最小正周期;
(2)求的解析式;
(3)若,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2-|x|+2a-1(a为实常数).
(1)若a=1,作函数f(x)的图象;
(2)设f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;
(3)设h(x)=,若函数h(x)在区间[1,2]上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数y=的定义域;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,满足
(1)求常数c的值;
(2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+4ax+2a+6.
(1) 若f(x)的值域是[0,+∞),求a的值;
(2) 若函数f(x)≥0恒成立,求g(a)=2-a|a-1|的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)是定义在R上的偶函数,且x≥0时,.
(1)求f(-1)的值;
(2)求函数f(x)的值域A;
(3)设函数的定义域为集合B,若AÍB,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设定义域为的函数
(Ⅰ)在平面直角坐标系内作出函数的图象,并指出的单调区间(不需证明);
(Ⅱ)若方程有两个解,求出的取值范围(只需简单说明,不需严格证明).
(Ⅲ)设定义为的函数为奇函数,且当时,的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=是奇函数,求a+b的值;

查看答案和解析>>

同步练习册答案