精英家教网 > 高中数学 > 题目详情

已知函数时取得最大值4.
(1)求的最小正周期;
(2)求的解析式;
(3)若,求的值域.

(1);(2);(3).

解析试题分析:(1)直接利用正弦函数的周期公式,求f(x)的最小正周期;
(2)利用函数的最值求出A,通过函数经过的特殊点,求出φ,然后求f(x)的解析式;
(3)通过,求出相位的范围,利用正弦函数的值域直接求f(x)的值域..
试题解析:解:(1)
,

(3)时,

的值域为
考点:1.由y=Asin(ωx+φ)的部分图象确定其解析式;2.三角函数的周期性及其求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数.为常数且
(1)当时,求
(2)若满足,但,则称的二阶周期点.证明函数有且仅有两个二阶周期点,并求二阶周期点
(3)对于(2)中的,设,记的面积为,求在区间上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知函数,在处取最小值.
(1)求的值;
(2)在中,分别是的对边,已知,求角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的单调性;
(2)若时,关于的方程有唯一解,求的值;
(3)当时,证明: 对一切,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最小正周期和值域;
(2)若,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某通讯公司需要在三角形地带区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域内,乙中转站建在区域内.分界线固定,且=百米,边界线始终过点,边界线满足
()百米,百米.

(1)试将表示成的函数,并求出函数的解析式;
(2)当取何值时?整个中转站的占地面积最小,并求出其面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上的函数,如果满足:对任意,存在常数,都有 成立,则称上的有界函数,其中称为函数的一个上界.已知函数
(1)若函数为奇函数,求实数的值;
(2)在(1)的条件下,求函数在区间上的所有上界构成的集合;
(3)若函数上是以3为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2x-,x∈(0,1].
(1)当a=-1时,求函数y=f(x)的值域;
(2)若函数y=f(x)在x∈(0,1]上是减函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案