精英家教网 > 高中数学 > 题目详情
12.多面体的三视图如图所示,则该多面体的体积为(  )
A.$\frac{16\sqrt{2}}{3}$cm3B.$\frac{32}{3}$cm3C.16$\sqrt{2}$cm3D.32cm3

分析 由已知中的三视图,可得该几何体是一个以主视图为底面的三棱锥,代入棱锥体积公式,可得答案.

解答 解:由已知中的三视图,可得该几何体是一个以主视图为底面的三棱锥,
故几何体的体积V=$\frac{1}{3}$×$\frac{1}{2}$×4×4×4=$\frac{32}{3}$cm3
故选:B.

点评 本题考查的知识点是棱锥的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设△ABC的三个内角为A,B,C,向量$\overrightarrow{m}$=($\sqrt{3}$sinA,sinB),$\overrightarrow{n}$=(cosB,$\sqrt{3}$cosA),若$\overrightarrow{m}$•$\overrightarrow{n}$=1-cos(A+B),则C等于(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=cos2x-sin2x+sin2x(x∈R).
(Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ) 若θ为锐角,且f(θ+$\frac{π}{8}$)=$\frac{\sqrt{2}}{3}$,求sin2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知a,b,c均为正实数,且a+b+c=1,求证:$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$≥9;
(2)已知a>b>c,且a+b+c=0,求证:$\sqrt{{b}^{2}-ac}$<$\sqrt{3}$a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,对定义域中的任一实数x均满足f($\sqrt{2}x$)=2f(x)的是(  )
A.f(x)=log2xB.f(x)=x|x|C.f(x)=x2+1D.f(x)=2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知:数列{an},{bn}中,a1=0,b1=1,且当n∈N*时,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列;
(1)求数列{an},{bn}的通项公式;
(2)求最小自然数k,使得当n≥k时,对任意实数λ∈[0,1],不等式(2λ-3)bn≥(2λ-4)an+λ-3恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.记${\left.{\overline{{a_n}{a_{n-1}}{a_{n-2}}…{a_1}{a_0}}}\right|_m}$=a0+a1×m+…+an-1×mn-1+an×mn,其中n≤m,m、n均为正整数,ak∈{0,1,2,…,m-1}(k=0,1,2,…,n)且an≠0;
(1)计算${\left.{\overline{2016}}\right|_7}$=699;
(2)设集合A(m,n)=$\left\{{{{\left.{\left.x\right|x=\overline{{a_n}{a_{n-1}}{a_{n-2}}…{a_1}{a_0}}}\right|}_m}}\right\}$,则A(m,n)中所有元素之和为$\frac{{({{m^{n+1}}+{m^n}-1})({{m^{n+1}}-{m^n}})}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ln(x2+1),g(x)=$\frac{1}{{x}^{2}-1}$+a.
(1)若f(x)的一个极值点到直线l:2$\sqrt{2}$x+y+a+5=0的距离为1,求a的值;
(2)求方程f(x)=g(x)的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.将函数f(x)=2x2-4x+5的图象向左平移2个单位,再向下平移2个单位,所得函数的解析式为y=2x2+4x+3.

查看答案和解析>>

同步练习册答案