精英家教网 > 高中数学 > 题目详情
2.设△ABC的三个内角为A,B,C,向量$\overrightarrow{m}$=($\sqrt{3}$sinA,sinB),$\overrightarrow{n}$=(cosB,$\sqrt{3}$cosA),若$\overrightarrow{m}$•$\overrightarrow{n}$=1-cos(A+B),则C等于(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 由平面向量数量积的坐标运算结合辅助角公式化积,可得$sin(C-\frac{π}{6})=\frac{1}{2}$.进一步求得C得答案.

解答 解:∵$\overrightarrow{m}$=($\sqrt{3}$sinA,sinB),$\overrightarrow{n}$=(cosB,$\sqrt{3}$cosA),
∴$\overrightarrow{m}$•$\overrightarrow{n}$=$\sqrt{3}sinAcosB+\sqrt{3}cosAsinB=\sqrt{3}sin(A+B)$,
又$\overrightarrow{m}$•$\overrightarrow{n}$=1-cos(A+B),∴$\sqrt{3}sin(A+B)=1-cos(A+B)$,
得$\sqrt{3}sinC-cosC=1$,即2$sin(C-\frac{π}{6})=1$,
∴$sin(C-\frac{π}{6})=\frac{1}{2}$.
∵$-\frac{π}{6}<C-\frac{π}{6}<\frac{5π}{6}$,∴$C-\frac{π}{6}=\frac{π}{6}$,则C=$\frac{π}{3}$.
故选:B.

点评 本题考查平面向量的数量积运算,考查了三角函数中的恒等变换应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设f(x)是定义在R上的减函数,对任意m,n∈R恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1.
(1)求f(0);
(2)解不等式f(x)•f(2x-x2)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若随机变量X的分布列为:
X01
p0.30.7
已知随机变量Y=aX+b(a,b∈R,a>0),且E(Y)=10,D(Y)=21,则a与b的值为(  )
A.a=10,b=3B.a=3,b=10C.a=100,b=-60D.a=60,b=-100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在数列{an}中,a1=1,且an+1=$\frac{{2{a_n}}}{{{a_n}+2}}$(n∈N*).
(Ⅰ)求a2,a3,a4的值;
(Ⅱ)猜想数列{an}的通项公式的表达式,并用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.①设数列{an}的前n项和为Sn,由an=2n-1,求出S${\;}_{1}={1}^{2}$,S${\;}_{2}={2}^{2}$,S${\;}_{3}={3}^{2}$,…,推断:S${\;}_{n}={n}^{2}$;②由圆x2+y2=r2的面积S=πr2,推断:椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的面积S=πab.则①②两个推理依次是(  )
A.归纳推理,类比推理B.演绎推理,类比推理
C.类比推理,演绎推理D.归纳推理,演绎推理

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某校为了了解学生的成绩是否与玩网游有关系,随机抽查了110名学生,得到如下2×2列联表:
  优秀非优秀 
 喜欢 10 50
 不喜欢 20 30
参考公式临界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828
(1)根据列联表的数据,问:有多大把握认为“成绩优秀与玩网友有关?”
(2)现采用分层抽样方法,从不喜欢的样本中抽取5人,再从5人中随机抽取2人,求至少有一人成绩优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知极坐标系与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴,直线l的参数方程为$\left\{\begin{array}{l}{x=4+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),圆C的极坐标方程为ρ=4cosθ,直线l与圆C交于M,N两点.
(Ⅰ)求圆C和直线l的普通方程;
(Ⅱ)求线段MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=2x2-ax+lnx在其定义域内不单调,则实数a的取范围为(  )
A.(-∞,4]B.(-∞,4)C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.多面体的三视图如图所示,则该多面体的体积为(  )
A.$\frac{16\sqrt{2}}{3}$cm3B.$\frac{32}{3}$cm3C.16$\sqrt{2}$cm3D.32cm3

查看答案和解析>>

同步练习册答案