精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在极坐标系中,已知曲线,将曲线上的点向左平移一个单位,然后纵坐标不变,横坐标轴伸长到原来的2倍,得到曲线,又已知直线是参数),且直线与曲线交于两点.

I)求曲线的直角坐标方程,并说明它是什么曲线;

II)设定点,求.

【答案】(I,是椭圆;(II.

【解析】

试题分析:I)对曲线两边乘以化为直角坐标为,经过平移和伸缩变换后得到曲线的直角坐标方程为,这是焦点在轴上的椭圆II)将直线的参数方程代入曲线的方程中,化简得,写出根与系数关系,,结合点的几何意义可求得.

试题解析:

I)曲线的直角坐标方程为:,即

曲线的直角坐标方程为

曲线表示焦点坐标为,长轴长为4的椭圆.

II)直线是参数)

将直线的方程代入曲线的方程中,

.

对应的参数方程为

结合的几何意义可知,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂有工人1000名,其中250名工人参加短期培训(称为类工人),另外750名工人参加过长期培训(称为类工人).现用分层抽样方法(按类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).

(1)类工人和类工人中个抽查多少工人

(2)从类工人中的抽查结果和从类工人中的抽查结果分别如下表1和表2.

表1:

表2:

先确定再完成下列频率分布直方图就生产能力而言类工人中个体间的差异程度与类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)

分别估计类工人和类工人生产能力的平均数并估计该工厂工人的生产能力的平均数(同一组中

的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别是,下顶点为,线段的中点为为坐标原点,如图,若抛物线轴的交点为,且经过.

(1)求椭圆的方程;

(2)为抛物线上的一动点,过点作抛物线的切线交椭圆于点两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工经过市场调查,甲产品的日销售量(单位:吨)与销售价格(单位:万元/吨)满足关系式(其中为常数),已知销售价格为万元/吨时,每天可售出该产品.

(1)求的值;

(2)若该产品的成本价格为万元/吨,当销售价格为多少时,该产品每天的利润最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是圆的直径, 垂直圆所在的平面, 是圆上的点.

(1)求证: 平面

(2)设的中点, 的重心,求证: 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面平面,四边形是正方形,四边形是菱形,且,点分别为边的中点,点是线段上的动点.

(1)求证:

(2)求三棱锥的体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一次研究性学习有整理数据撰写报告两项任务,两项任务无先后顺序,每项任务的完成相互独立,互不影响某班研究性学习有甲、乙两个小组根据以往资料统计,甲小组完成研究性学习两项任务的概率都为,乙小组完成研究性学习两项任务的概率都为若在一次研究性学习中,两个小组完成任务项数相等而且两个小组完成任务数都不少于一项,则称该班为和谐研究班

1,求在一次研究性学习中,已知甲小组完成两项任务的条件下,该班荣获和谐研究班的概率;

2设在完成4次研究性学习中该班获得和谐研究班的次数为,若的数学期望,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,设,其中

1若函数在区间上单调递增,求实数的取值范围;

2,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆上的点满足,且的面积为

1求椭圆的方程;

2设椭圆的左、右顶点分别为,过点的动直线与椭圆相交于两点,直线与直线的交点为,证明:点总在直线

查看答案和解析>>

同步练习册答案