【题目】选修4-4:坐标系与参数方程
在极坐标系中,已知曲线,将曲线上的点向左平移一个单位,然后纵坐标不变,横坐标轴伸长到原来的2倍,得到曲线,又已知直线(是参数),且直线与曲线交于两点.
(I)求曲线的直角坐标方程,并说明它是什么曲线;
(II)设定点,求.
科目:高中数学 来源: 题型:
【题目】某工厂有工人1000名,其中250名工人参加短期培训(称为类工人),另外750名工人参加过长期培训(称为类工人).现用分层抽样方法(按类,类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).
(1)类工人和类工人中个抽查多少工人?
(2)从类工人中的抽查结果和从类工人中的抽查结果分别如下表1和表2.
表1:
表2:
① 先确定,,再完成下列频率分布直方图,就生产能力而言,类工人中个体间的差异程度与类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
② 分别估计类工人和类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中
的数据用该组区间的中点值作代表).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的左、右焦点分别是,下顶点为,线段的中点为(为坐标原点),如图,若抛物线与轴的交点为,且经过点.
(1)求椭圆的方程;
(2)设,为抛物线上的一动点,过点作抛物线的切线交椭圆于点、两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂经过市场调查,甲产品的日销售量(单位:吨)与销售价格(单位:万元/吨)满足关系式(其中为常数),已知销售价格为万元/吨时,每天可售出该产品吨.
(1)求的值;
(2)若该产品的成本价格为万元/吨,当销售价格为多少时,该产品每天的利润最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知平面平面,四边形是正方形,四边形是菱形,且,,点、分别为边、的中点,点是线段上的动点.
(1)求证:;
(2)求三棱锥的体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一次研究性学习有“整理数据”、“撰写报告”两项任务,两项任务无先后顺序,每项任务的完成相互独立,互不影响.某班研究性学习有甲、乙两个小组.根据以往资料统计,甲小组完成研究性学习两项任务的概率都为,乙小组完成研究性学习两项任务的概率都为.若在一次研究性学习中,两个小组完成任务项数相等.而且两个小组完成任务数都不少于一项,则称该班为“和谐研究班”.
(1)若,求在一次研究性学习中,已知甲小组完成两项任务的条件下,该班荣获“和谐研究班”的概率;
(2)设在完成4次研究性学习中该班获得“和谐研究班”的次数为,若的数学期望,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、,椭圆上的点满足,且的面积为.
(1)求椭圆的方程;
(2)设椭圆的左、右顶点分别为、,过点的动直线与椭圆相交于、两点,直线与直线的交点为,证明:点总在直线上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com