已知直三棱柱中,,是中点,是中点.
(1)求三棱柱的体积;
(2)求证:;
(3)求证:∥面.
(1);(2)证明详见解析;(3)证明详见解析.
解析试题分析:(1)这是一个直三棱柱,直接由体积计算公式即可求解;(2)要证,只须证明面,注意到面与底面垂直且交线为,而依题意又有,由面面垂直的性质可得面,问题得证;(3)要证∥面,有两种思路:一是在平面内找一条直线与平行,这时只须取的中点,连接,证明四边形为平行四边形即可;二是先证经过直线的一个平面与面平行,这时可取中点,连结,,先证明面∥面,再由面面平行的性质即可证明∥面.
试题解析:(1) 3分
(2)∵,∴为等腰三角形
∵为中点,∴ -4分
∵为直棱柱,∴面面 5分
∵面面,面
∴面 6分
∴ 7分
(3)取中点,连结, 8分
∵分别为的中点
∴∥,∥, 9分
∴面∥面 11分
面
科目:高中数学 来源: 题型:解答题
如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).
(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米).
(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出灯笼的三视图(作图时,不需考虑骨架等因素).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一个几何体是由圆柱和三棱锥组合而成,点、、在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图4所示,其中,,,.
(1)求证:;
(2)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知一个四棱锥P-ABCD的三视图(正视图与侧视图为直角三角形,俯视图是带有一条对角线的正方形)如图,E是侧棱PC的中点.
(1)求四棱锥P-ABCD的体积;
(2)求证:平面APC⊥平面BDE.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在四棱锥P-ABCD中,△PBC为正三角形,PA⊥底面ABCD,其三视图如图所示,俯视图是直角梯形.
(1)求正视图的面积;
(2)求四棱锥P-ABCD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com