精英家教网 > 高中数学 > 题目详情
设过点的直线分别与正半轴, 轴正半轴交于两点,为坐标原点,则三角形面积最小时直线方程为                   
此题考查直线方程的求法、均值不等式的应用;
【解法一】设直线的方程为,则,所以,当且仅当时上式取得等号,所以三角形面积最小时直线方程为
【解法二】设直线的方程为,且,当且仅当等号成  立,此时,所以方程为,即为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知△ABC的三个顶点坐标分别是A(4,1),B(3,4),C(-1,2),BD是∠ABC的平分线,求点D的坐标及BD的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知O为坐标原点,点A(x,y)与点B关于x轴对称,
j
=(0,1)
,则满足不等式
OA
2
+
j
AB
≤0
的点A的集合用阴影表示(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,点A,B,C是圆O上的三点,线段OC与线段AB交于圆内一点,若
OC
=m
OA
+n
OB
,则(  )
A.0<m+n<1B.m+n>1C.m+n<-1D.-1<m+n<0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率,左、右焦点分别为,定点P,点在线段的中垂线上.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线的倾斜角分别为,求证:直线过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分.
  已知两点,点是直角坐标平面上的动点,若将点的横坐标保持不变、纵坐标扩大到倍后得到点满足
(1) 求动点所在曲线的轨迹方程;
(2)(理科)过点作斜率为的直线交曲线两点,且满足,又点关于原点O的对称点为点,试问四点是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
(文科)过点作斜率为的直线交曲线两点,且满足(O为坐标原点),试判断点是否在曲线上,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆的半径为定长是圆所在平面内一定点,是圆上任意一点,线段的垂直平分线与直线相交于点,当在圆上运动时,点的轨迹可能是下列图形中的:               .(填写所有可能图形的序号)
①点;②直线;③圆;④抛物线;⑤椭圆;⑥双曲线;⑦双曲线的一支.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线的极坐标方程为,直线的参数方程是:  .
(Ⅰ)求曲线的直角坐标方程,直线的普通方程;
(Ⅱ)求曲线与直线交与两点,求长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
设椭圆的离心率,右焦点到直线的距离为坐标原点.
(I)求椭圆的方程;
(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直
线的距离为定值,并求弦长度的最小值.

查看答案和解析>>

同步练习册答案