【题目】经销商经销某种农产品,在一个销售季度内,每售出
该产品获利润500元,未售出的产品,每
亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如图所示.经销商为下一个销售季度购进了
该农产品.以
(
)表示下一个销售季度内的市场需求量,
(单位:元)表示下一个销售季度内经销该农产品的利润.
(Ⅰ)将
表示为
的函数;
(Ⅱ)根据直方图估计利润
不少于57000元的概率.
![]()
【答案】(Ⅰ)T=
.(Ⅱ)下一个销售季度的利润T不少于57000元的概率的估计值为0.7.
【解析】试题分析:(I)由题意先分段写出,当X∈[100,130)时,当X∈[130,150)时,和利润值,最后利用分段函数的形式进行综合即可.
(II)由(I)知,利润T不少于57000元,当且仅当120≤X≤150.再由直方图知需求量X∈[120,150]的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T不少于57000元的概率的估计值.
解:(I)由题意得,当X∈[100,130)时,T=500X﹣300(130﹣X)=800X﹣39000,
当X∈[130,150]时,T=500×130=65000,
∴T=
.
(II)由(I)知,利润T不少于57000元,当且仅当120≤X≤150.
由直方图知需求量X∈[120,150]的频率为0.7,
所以下一个销售季度的利润T不少于57000元的概率的估计值为0.7.
科目:高中数学 来源: 题型:
【题目】某校组织“中国诗词”竞赛,在“风险答题”的环节中,共为选手准备了
三类不同的题目,选手每答对一个
类、
类或
类的题目,将分别得到
分,
分,
分,但如果答错,则相应要扣去
分,
分,
分,根据平时训练经验,选手甲答对
类、
类或
类的题目的概率分别为
、
、
,若要每一次答题的均分更大一些,则选手甲应选择的题目类型应为_________.(填
,
或
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(
为参数),在以原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(1)求
的普通方程和
的倾斜角;
(2)设点
,
和
交于
两点,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
的极坐标方程是
,以极点为原点,极轴为
轴的正半轴建立平面直角坐标系,直线
的参数方程为
(
为参数).
(Ⅰ)写出直线
的普通方程与曲线
的直角坐标方程;
(Ⅱ)设曲线
经过伸缩变换
得到曲线
,若点
,直线
与
交与
,
,求
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
平面
,四边形
是菱形,
,
,且
,
交于点
,
是
上任意一点.
(1)求证:
;
(2)已知二面角
的余弦值为
,若
为
的中点,求
与平面
所成角的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过椭圆
:
上一点
向
轴作垂线,垂足为右焦点
,
、
分别为椭圆
的左顶点和上顶点,且
,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若动直线
与椭圆
交于
、
两点,且以
为直径的圆恒过坐标原点
.问是否存在一个定圆与动直线
总相切.若存在,求出该定圆的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,设
为曲线
在点
处的切线,其中
.
(Ⅰ)求直线
的方程(用
表示);
(Ⅱ)求直线
在
轴上的截距的取值范围;
(Ⅲ)设直线
分别与曲线
和射线
(
)交于
,
两点,求
的最小值及此时
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com