精英家教网 > 高中数学 > 题目详情
6.求函数y=$\frac{1}{2}$$\sqrt{{x}^{2}+2x-3}$的单调区间.

分析 根据复合函数单调性之间的关系进行求解即可.

解答 解:设t=x2+2x-3,则y=$\frac{1}{2}\sqrt{t}$为增函数,
由t=x2+2x-3≥0得x≥1或x≤-3,
当x≥1时,函数t=x2+2x-3为增函数,则此时y=$\frac{1}{2}$$\sqrt{{x}^{2}+2x-3}$为增函数,即函数的单调递增区间为[1,+∞),
当x≤-3时,函数t=x2+2x-3为减函数,则此时y=$\frac{1}{2}$$\sqrt{{x}^{2}+2x-3}$为减函数,即函数的单调递减区间为(-∞,-3]

点评 本题主要考查函数单调性以及单调区间的求解,根据复合函数单调性之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知抛物线y2=-2px的准线与圆x2+y2-6x+8=0相切,则p的值为4或8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知关于x的实系数一元二次方程ax2+bx+c=0,求:
(1)有两个正根的充要条件;
(2)有一个正根、一个根为零的充要条件;
(3)有一个大于2的根和一个小于2的根的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,且在两种坐标系中取相同的单位长度,将点P的极坐标(2,$\frac{π}{4}$)化成直角坐标($\sqrt{2}$,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解不等式:
(1)x2-3ax+2a2>0;
(2)x2+ax+1>0;
(3)x2-(2m-3)x+m2-3m≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解分式方程:
(1)$\frac{5}{{x}^{2}+6x+2}$+$\frac{4}{{x}^{2}+6x+8}$=$\frac{3}{{x}^{2}+6x+1}$;
(2)$\frac{2({x}^{2}+1)}{x+1}$+$\frac{6(x+1)}{{x}^{2}+1}$=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知条件p:x∈A,且A={x|a-1<x<a+1},条件q:x∈B,且B={x|y=$\sqrt{{x}^{2}-3x+2}$}.若p是q的充分条件,则实数a的取值范围是a≥3或a≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知非零向量$\overline{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,且($\overrightarrow{a}-\overrightarrow{b}$)•($\overrightarrow{a}+\overrightarrow{b}$)=$\frac{1}{2}$,则|$\overrightarrow{b}$|=(  )
A.$\frac{\sqrt{6}}{2}$B.$\frac{1}{4}$C.-$\frac{\sqrt{6}}{2}$D.±$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设椭圆$\frac{{x}^{2}}{m+48}$+$\frac{{y}^{2}}{m}$=1与直线x-y-3=0交于A(x1,y1),B(x2,y2)两点,求x1x2+y1y2的值.

查看答案和解析>>

同步练习册答案