精英家教网 > 高中数学 > 题目详情
14.在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,且在两种坐标系中取相同的单位长度,将点P的极坐标(2,$\frac{π}{4}$)化成直角坐标($\sqrt{2}$,$\sqrt{2}$).

分析 设P(x,y),由公式x=ρcosθ、y=ρsinθ和条件可得答案.

解答 解:设点(2,$\frac{π}{4}$)的直角坐标是(x,y),
由题意得,x=2cos$\frac{π}{4}$=$\sqrt{2}$,y=2sin$\frac{π}{4}$=$\sqrt{2}$,
所以点(2,$\frac{π}{4}$)的直角坐标是($\sqrt{2}$,$\sqrt{2}$).
故答案为:($\sqrt{2}$,$\sqrt{2}$).

点评 本题考查极坐标与直角坐标的互化,掌握相关转化公式是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如图,网格纸上小正方形的边长为1,粗实线画出的是某底面为正方形的四棱锥的三视图,则该四棱锥的表面积为(  )
A.$\sqrt{2}$+$\sqrt{6}$B.2+2$\sqrt{6}$C.2+2$\sqrt{2}$+2$\sqrt{6}$D.2+3$\sqrt{2}$+$\sqrt{22}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设经过定点P(a,0)的直线与抛物线y2=6x相交于A,B两点,若$\frac{1}{|PA{|}^{2}}+\frac{1}{|PB{|}^{2}}$为定值,则a=(  )
A.6B.3C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若方程x2-2ax+a+2=0的一根在区间(0,1)内,另一根在(2,+∞),则实数a的取值范围是(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设x,y是正实数,且2x+y=4,求lgx+lgy的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知三个球的半径R1,R2,R3满足R1+2R2=3R3,则它们的体积V1,V2,V3满足的等量关系是$\root{3}{{V}_{1}}+2\root{3}{{V}_{2}}=3\root{3}{{V}_{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求函数y=$\frac{1}{2}$$\sqrt{{x}^{2}+2x-3}$的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线3x+2y-4=0过椭圆C的顶点,且椭圆C的焦点恰好是双曲线x2-y2=5的顶点.
(1)求椭圆C的方程;
(2)已知经过定点M(2,0),斜率存在且不为0的直线l交椭圆C于A、B两点,试问在x轴上是否存在另一个定点P,使得PM始终平分∠APB,若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点为F1、F2,且椭圆E过点(0,$\sqrt{3}$),($\sqrt{3}$,-$\frac{\sqrt{6}}{2}$),点A是椭圆上位于第一象限的一点,且△AF1F2的面积S${\;}_{A{F}_{1}{F}_{2}}$=$\sqrt{3}$.
(1)求点A的坐标;
(2)过点B(3,0)的直线l与椭圆E相交于点P、Q,直线AP、AQ分别与x轴相交于点M、N,点C($\frac{5}{2}$,0),证明:|CM|•|CN|为定值,并求出该定值.

查看答案和解析>>

同步练习册答案