精英家教网 > 高中数学 > 题目详情
15.已知非零向量$\overline{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,且($\overrightarrow{a}-\overrightarrow{b}$)•($\overrightarrow{a}+\overrightarrow{b}$)=$\frac{1}{2}$,则|$\overrightarrow{b}$|=(  )
A.$\frac{\sqrt{6}}{2}$B.$\frac{1}{4}$C.-$\frac{\sqrt{6}}{2}$D.±$\frac{\sqrt{6}}{2}$

分析 利用数量积运算性质即可得出.

解答 解:∵($\overrightarrow{a}-\overrightarrow{b}$)•($\overrightarrow{a}+\overrightarrow{b}$)=$\frac{1}{2}$,
∴${\overrightarrow{a}}^{2}-{\overrightarrow{b}}^{2}$=$\frac{1}{2}$,
又|$\overrightarrow{a}$|=$\sqrt{2}$,
∴2-${\overrightarrow{b}}^{2}$=$\frac{1}{2}$,
∴${\overrightarrow{b}}^{2}$=$\frac{3}{2}$,
∴$|\overrightarrow{b}|$=$\frac{\sqrt{6}}{2}$.
故选:A.

点评 本题考查了数量积运算性质,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设经过定点P(a,0)的直线与抛物线y2=6x相交于A,B两点,若$\frac{1}{|PA{|}^{2}}+\frac{1}{|PB{|}^{2}}$为定值,则a=(  )
A.6B.3C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求函数y=$\frac{1}{2}$$\sqrt{{x}^{2}+2x-3}$的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线3x+2y-4=0过椭圆C的顶点,且椭圆C的焦点恰好是双曲线x2-y2=5的顶点.
(1)求椭圆C的方程;
(2)已知经过定点M(2,0),斜率存在且不为0的直线l交椭圆C于A、B两点,试问在x轴上是否存在另一个定点P,使得PM始终平分∠APB,若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知P是双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1上的任意一点,F1,F2是它的左右焦点,且|PF1|=5,则|PF2|=(  )
A.1B.9C.1或9D.9或5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,a、b、c分别为内角A、B、C的对边.若a=1,c=$\sqrt{2}$,cosC=$\frac{3}{4}$.
(1)求sinA的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=alnx,g(x)=-x2+3x-2.
(1)当a=1时,求f(x),g(x)在x=1处的切线;
(2)讨论函数h(x)=f(x)-g(x)的单调性;
(3)若f(x)>g(x)在x>1时恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点为F1、F2,且椭圆E过点(0,$\sqrt{3}$),($\sqrt{3}$,-$\frac{\sqrt{6}}{2}$),点A是椭圆上位于第一象限的一点,且△AF1F2的面积S${\;}_{A{F}_{1}{F}_{2}}$=$\sqrt{3}$.
(1)求点A的坐标;
(2)过点B(3,0)的直线l与椭圆E相交于点P、Q,直线AP、AQ分别与x轴相交于点M、N,点C($\frac{5}{2}$,0),证明:|CM|•|CN|为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.阅读如图的程序框图,运行相应的程序,则输出i的值(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案