分析 (1)由条件利用同角三角函数的基本关系求得sinC的值,再利用正弦定理求得sinA的值.
(2)由条件利用余弦定理求得b的值,可得△ABC的面积${S_{△ABC}}=\frac{1}{2}absinC$ 的值.
解答 解:(1)∵$cosC=\frac{3}{4}$,0<C<π,∴$sinC=\sqrt{1-{{cos}^2}C}=\frac{{\sqrt{7}}}{4}$.
根据正弦定理:$\frac{a}{sinA}=\frac{c}{sinC}$,即 $sinA=\frac{asinC}{c}=\frac{{\sqrt{7}}}{{4\sqrt{2}}}=\frac{{\sqrt{14}}}{8}$.
(2)根据余弦定理 c2=a2+b2-2abcosC,即 $2=1+{b^2}-\frac{3}{2}b$,即 2b2-3b-2=0.
∵b>0,∴b=2,∴${S_{△ABC}}=\frac{1}{2}absinC$=$\frac{\sqrt{7}}{4}$.
点评 本题主要考查同角三角函数的基本关系,正弦定理、余弦定理的应用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{6}}{2}$ | B. | $\frac{1}{4}$ | C. | -$\frac{\sqrt{6}}{2}$ | D. | ±$\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com