精英家教网 > 高中数学 > 题目详情
2+
3
与2-
3
的等比中项是
 
考点:等比数列的性质
专题:等差数列与等比数列
分析:根据等比中项的性质,建立方程即可得到结论.
解答: 解:根据等比数列中项的定义可知,设2+
3
与2-
3
的等比中项是x,
则满足x2=(2+
3
)(2-
3
)=4-3=1,
解得x=±1,
故答案为:±1;
点评:本题主要考查等比中项的定义,根据等比中项的定义建立方程是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=f(x)的图象关于点(a,b)对称的充要条件是f(a-x)+f(a+x)=2b(或f(x)+f(2a-x)=2b.如果函数y=f(x)的图象关于点(a,b)对称,则称(a,b)为“中心点”,称函数y=f(x)为“中心函数”.
①已知f(x)在R上的“中心点”为(a,f(a))则函数F(x)=f(x+a)-f(a)为R上的奇函数.
②已知定义在R上的偶函数y=f(x)的“中心点”为(1,1),则方程f(x)=1为[0,10]上至少有5个根.
③已知f(x)是定义在R上的增函数,点(1,0)为函数y=f(x-1)的“中心点”,若不等式f(m2-6m+21)+f(n2-8n)<0对?m,n∈R恒成立,则当m>3时,13<m2+n2<49.
④已知函数f(x)=2x-cosx为“中心函数”,数列{an}是公差为
π
8
的等差数列.若
7
n=1
f(an)=7π,则
[f(a4)]2
a1a7
=
64
5

其中你认为是正确的所有命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将正整数1,2,3,4,…,n2(n≥2)任意排成n行n列的数表,对于某一个数表,计算各行和各列中的任意两个数a,b(a>b)的比值
a
b
,称这些比值中的最小值为这个数表的“特征值”,记为f(n).若aij表示某个n行n列数表中第i行第j列的数(1≤i≤n,1≤j≤n),且满足aij=
i+(j-i-1)n,i<j
i+(n-i+j-1)n,i≥j
,则:
(1)f(3)=
 

(2)f(2013)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序框图如图所示,判断框内为“k≥n?”,n为正整数,若输出的S=26,则判断框内的n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=a(x+2a)(x-a-3),g(x)=2-x-2同时满足下列条件:
①?x∈R,f(x)<0或g(x)<0;
②?x∈(1,+∞),f(x)g(x)<0;
则实数a的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=
 
.若要从身高在[120,130),[130,140),[140,150),三组内的学生中,用分层抽样的方法选取12人参加一项活动,则从身高在[140,150)内的学生中选取的人数应为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图所示的程序框图,若输入i=5,则输出的k值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知[x]表示不超过x的最大整数,例如[-1.5]=-2,[1.5]=1.设函数f(x)=[x[x]],当x∈[0,n)(n∈N*)时,函数f(x)的值域为集合A,则A中的元素个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若某程序框图如图所示,则该程序运行后输出的值是(  )
A、4B、5C、6D、7

查看答案和解析>>

同步练习册答案