分析 (1)令g(a)=-4xa+4x2-1,若f(x)>1对任意的a∈[-1,1]恒成立,则$\left\{\begin{array}{l}g(1)>0\\ g({-1})>0\end{array}\right.$,解得x的取值范围;
(2)若对任意的x∈[0,1],|f(x)|≤1,即对任意的x∈[0,1],-1≤4x2-4ax≤1恒成立,即$4x-\frac{1}{x}≤4a≤4x+\frac{1}{x}$,解得实数a的取值范围.
解答 解:(Ⅰ)令g(a)=-4xa+4x2-1,
若f(x)>1对任意的a∈[-1,1]恒成立,
则$\left\{\begin{array}{l}g(1)>0\\ g({-1})>0\end{array}\right.$,
解的$x<\frac{{-1-\sqrt{2}}}{2}或x>\frac{{1+\sqrt{2}}}{2}$
(Ⅱ)若对任意的x∈[0,1],|f(x)|≤1,
即对任意的x∈[0,1],-1≤4x2-4ax≤1恒成立,
即$4x-\frac{1}{x}≤4a≤4x+\frac{1}{x}$,
所以3≤4a≤4,
即$\frac{3}{4}≤a≤1$.
点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 1或2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com