精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=4x2-4ax.
(1)若f(x)>1对任意的a∈[-1,1]恒成立,求x的取值范围;
(2)若对任意的x∈[0,1],|f(x)|≤1,求实数a的取值范围.

分析 (1)令g(a)=-4xa+4x2-1,若f(x)>1对任意的a∈[-1,1]恒成立,则$\left\{\begin{array}{l}g(1)>0\\ g({-1})>0\end{array}\right.$,解得x的取值范围;
(2)若对任意的x∈[0,1],|f(x)|≤1,即对任意的x∈[0,1],-1≤4x2-4ax≤1恒成立,即$4x-\frac{1}{x}≤4a≤4x+\frac{1}{x}$,解得实数a的取值范围.

解答 解:(Ⅰ)令g(a)=-4xa+4x2-1,
若f(x)>1对任意的a∈[-1,1]恒成立,
则$\left\{\begin{array}{l}g(1)>0\\ g({-1})>0\end{array}\right.$,
解的$x<\frac{{-1-\sqrt{2}}}{2}或x>\frac{{1+\sqrt{2}}}{2}$
(Ⅱ)若对任意的x∈[0,1],|f(x)|≤1,
即对任意的x∈[0,1],-1≤4x2-4ax≤1恒成立,
即$4x-\frac{1}{x}≤4a≤4x+\frac{1}{x}$,
所以3≤4a≤4,
即$\frac{3}{4}≤a≤1$.

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC,直线AM与直线PC所成的角为45°,又AC=1,BC=2PM=2,∠ACB=90°.
(1)求证:AC⊥BM;
(Ⅱ)求二面角M-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过三棱锥高的中点做平行底面的截面,则截面与底面的面积之比为1:4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=x2+(2-k)x+1在[-2,2]上是单调函数,则k的取值范围为(-∞,-2]∪[6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=x2-2x+1在闭区间[0,3]上的最大值和最小值之和为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.对于两个定义域相同的函数f(x),g(x),若存在实数m,n使h(x)=mf(x)+ng(x),则称函数h(x)是由“基函数f(x),g(x)”生成的.
(Ⅰ)若h(x)=2x2+3x+1由函数f(x)=x2+ax,g(x)=x+b生成,$b∈[\frac{1}{2},\;1]$,求a+2b的取值范围;
(Ⅱ)试利用“基函数$f(x)={log_4}({4^x}+1),g(x)=x-1$”生成一个函数h(x),使之满足下列条件:
①是偶函数;
②有最小值1.
求h(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.对于抛物线C:x2=4y,我们称满足$x_0^2<4{y_0}$的点M(x0,y0)在抛物线的内部,则直线l:x0x=2(y+y0)与抛物线C公共点的个数是(  )
A.0B.1C.2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知长方体的对角线的长为$\sqrt{29}$,长、宽、高之和为9,则此长方体的表面积为52.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数${f_{\;}}(x)={x^3}-3{a^2}x-1$,(a<0).
(1)求f(x)的单调增区间;
(2)若f(x)在x=-1处取得极值,直线y=t与y=f(x)的图象有三个不同的交点,求t的取值范围.

查看答案和解析>>

同步练习册答案