精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为,准线为上一点,直线与抛物线交于两点,若,则=

A.B.

C.D.

【答案】B

【解析】

先根据题意写出直线的方程,再将直线的方程与抛物线y22x的方程组成方程组,消去y得到关于x的二次方程,最后利用根与系数的关系结合抛物线的定义即可求线段AB的长.

解:抛物线Cy22x的焦点为F0),准线为lx=﹣,设Mx1y1),Nx2y2),MN到准线的距离分别为dMdN

由抛物线的定义可知|MF|dMx1+|NF|dNx2+,于是|MN||MF|+|NF|x1+x2+1

,则,易知:直线MN的斜率为±

F0),

∴直线PF的方程为y=±x),

y=±x),代入方程y22x,得3x22x,化简得12x220x+30

x1+x2,于是|MN|x1+x2+11

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出盒该产品获利润元,未售出的产品,每盒亏损元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.

(1)根据直方图估计这个开学季内市场需求量的众数和平均数;

(2)将表示为的函数;

(3)根据直方图估计利润不少于元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市创卫办为了了解该市开展创卫活动的成效,对市民进行了一次创卫满意程度测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”计5分,“不合格”计0分,现随机抽取部分市民的回答问卷,统计结果及对应的频率分布直方图如图所示:

等级

不合格

合格

得分

频数

6

24

1)求的值;

2)按照分层抽样的方法,从评定等级为“合格”和“不合格”的问卷中随机抽取10份进行问题跟踪调研,现再从这10份问卷中任选4份,记所选4份问卷的量化总分为,求的分布列及数学期望

3)某评估机构以指标,其中表示的方差)来评估该市创卫活动的成效.,则认定创卫活动是有效的;否则认为创卫活动无效,应该调整创卫活动方案.在(2)的条件下,判断该市是否应该调整创卫活动方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,又有四个零点,则实数的取值范围是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在四棱锥中,底面是边长为的正方形,是正三角形,CD平面PADE,F,G,O分别是PC,PD,BC,AD 的中点.

(Ⅰ)求证:PO平面

(Ⅱ)求平面EFG与平面所成锐二面角的大小;

(Ⅲ)线段上是否存在点,使得直线与平面所成角为,若存在,求线段的长度;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有四个函数yx|sinx|yxcos|x|yxln|x|的部分图象如下,但顺序被打乱,则按照图象从左到右的顺序,对应的函数序号正确的一组是( )

A.①④②③B.①④③②C.③②④①D.③④②①

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201911月份,全国工业生产者出厂价格同比下降,环比下降某企业在了解市场动态之后,决定根据市场动态及时作出相应调整,并结合企业自身的情况作出相应的出厂价格,该企业统计了20191~10月份产品的生产数量(单位:万件)以及销售总额(单位:十万元)之间的关系如下表:

2.08

2.12

2.19

2.28

2.36

2.48

2.59

2.68

2.80

2.87

4.25

4.37

4.40

4.55

4.64

4.75

4.92

5.03

5.14

5.26

1)计算的值;

2)计算相关系数,并通过的大小说明之间的相关程度;

3)求的线性回归方程,并推测当产量为3.2万件时销售额为多少.(该问中运算结果保留两位小数)

附:回归直线方程中的斜率和截距的最小二乘估计公式分别为

相关系数.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数,.

)若是函数的一个极值点,求的值;

)求证:当时,上是增函数;

)若对任意的12),总存在,使不等式成立,求实数的取范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了提高学生的身体素质,某校高一、高二两个年级共336名学生同时参与了我运动,我健康,我快乐的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取7名和5名学生进行测试.下表是高二年级的5名学生的测试数据(单位:个/分钟):

1)求高一、高二两个年级各有多少人?

2)设某学生跳绳/分钟,踢毽/分钟.,且时,称该学生为运动达人”.

①从高二年级的学生中任选一人,试估计该学生为运动达人的概率;

②从高二年级抽出的上述5名学生中,随机抽取3人,求抽取的3名学生中为运动达人的人数的分布列和数学期望.

查看答案和解析>>

同步练习册答案