【题目】为了提高学生的身体素质,某校高一、高二两个年级共336名学生同时参与了“我运动,我健康,我快乐”的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取7名和5名学生进行测试.下表是高二年级的5名学生的测试数据(单位:个/分钟):
(1)求高一、高二两个年级各有多少人?
(2)设某学生跳绳个/分钟,踢毽个/分钟.当,且时,称该学生为“运动达人”.
①从高二年级的学生中任选一人,试估计该学生为“运动达人”的概率;
②从高二年级抽出的上述5名学生中,随机抽取3人,求抽取的3名学生中为“运动达人”的人数的分布列和数学期望.
科目:高中数学 来源: 题型:
【题目】某企业参加项目生产的工人为人,平均每人每年创造利润万元.根据现实的需要,从项目中调出人参与项目的售后服务工作,每人每年可以创造利润万元(),项目余下的工人每人每年创造利图需要提高
(1)若要保证项目余下的工人创造的年总利润不低于原来名工人创造的年总利润,则最多调出多少人参加项目从事售后服务工作?
(2)在(1)的条件下,当从项目调出的人数不能超过总人数的时,才能使得项目中留岗工人创造的年总利润始终不低于调出的工人所创造的年总利润,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
(1)求这100件产品质量指标值的样本平均数和样本方差(同一组的数据用该组区间的中点值作为代表);
(2)由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数,近似为样本方差。
(i)若某用户从该企业购买了10件这种产品,记表示这10件产品中质量指标值位于(187.4,225.2)的产品件数,求;
(ii)一天内抽取的产品中,若出现了质量指标值在之外的产品,就认为这一天的生产过程中可能出现了异常情况,需对当天的生产过程进行检查下。下面的茎叶图是检验员在一天内抽取的15个产品的质量指标值,根据近似值判断是否需要对当天的生产过程进行检查。
附:,,,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据国家统计局发布的数据,2019年11月全国(居民消费价格指数),同比上涨,上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响上涨3.27个百分点.下图是2019年11月一篮子商品权重,根据该图,下列四个结论正确的有______.
①一篮子商品中权重最大的是居住
②一篮子商品中吃穿住所占权重超过
③猪肉在一篮子商品中权重为
④猪肉与其他禽肉在一篮子商品中权重约为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市劳动部门坚持就业优先,釆取多项措施加快发展新兴产业,服务经济,带来大量就业岗位,据政府工作报告显示,截至2018年末,全市城镇新增就业21.9万人,创历史新高.城镇登记失业率为4.2%,比上年度下降0.73个百分点,处于近20年来的最低水平.
(1)现从该城镇适龄人群中抽取100人,得到如下列联表:
失业 | 就业 | 合计 | |
男 | 3 | 62 | 65 |
女 | 2 | 33 | 35 |
合计 | 5 | 95 | 100 |
根据联表判断是否有99%的把握认为失业与性别有关?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(2)调查显示,新增就业人群中,新兴业态,民营经济,大型国企对就业支撑作用不断增强,其岗位比例为2∶5∶3,现要抽取一个样本容量为50的样本,则这三种岗位应该各抽取多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标坐标系中,曲线的参数方程为(为参数),曲线: .以为极点, 轴的非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.
(1)求曲线的极坐标方程;
(2)射线()与曲线的异于极点的交点为,与曲线的交点为,求.
【答案】(1) 的极坐标方程为, 的极坐标方程为;(2) .
【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线,再根据将曲线的极坐标方程;(2)将代人曲线的极坐标方程,再根据求.
试题解析:(1)曲线的参数方程(为参数)
可化为普通方程,
由,可得曲线的极坐标方程为,
曲线的极坐标方程为.
(2)射线()与曲线的交点的极径为,
射线()与曲线的交点的极径满足,解得,
所以.
【题型】解答题
【结束】
23
【题目】设函数.
(1)设的解集为,求集合;
(2)已知为(1)中集合中的最大整数,且(其中,,为正实数),求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设抛物线C1:的准线1与x轴交于椭圆C2:的右焦点F2,F1为C2的左焦点.椭圆的离心率为,抛物线C1与椭圆C2交于x轴上方一点P,连接PF1并延长其交C1于点Q,M为C1上一动点,且在P,Q之间移动.
(1)当取最小值时,求C1和C2的方程;
(2)若△PF1F2的边长恰好是三个连续的自然数,当△MPQ面积取最大值时,求面积最大值以及此时直线MP的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com