精英家教网 > 高中数学 > 题目详情

甲厂以x千克/小时的速度运输生产某种产品(生产条件要求1≤x≤10),每小时可获得利润是100(5x+1-)元.
(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.

(1)3≤x≤10(2)457500元

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知
(1)求函数的最小值;
(2)对一切恒成立,求实数的取值范围;
(3)证明:对一切,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆c:(a>b>0)的离心率为,过其右焦点F与长轴垂直的弦长为1,
(1)求椭圆C的方程;
(2)设椭圆C的左右顶点分别为A,B,点P是直线x=1上的动点,直线PA与椭圆的另一个交点为M,直线PB与椭圆的另一个交点为N,求证:直线MN经过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知幂函数为偶函数.
(1)求的解析式;
(2)若函数在区间(2,3)上为单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)设,证明:在区间内存在唯一的零点;
(2)设,若对任意,有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD、AB距离分别为9m、3m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF,MN∶NE=16∶9.线段MN必须过点P,端点M、N分别在边AD、AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2).
 
(1)用x的代数式表示AM;
(2)求S关于x的函数关系式及该函数的定义域;
(3)当x取何值时,液晶广告屏幕MNEF的面积S最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=|2x-1-1|.
(1)作出函数y=f(x)的图象;
(2)若a<c,且f(a)>f(c),求证:2a+2c<4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两函数f(x)=8x2+16x-k,g(x)=2x3+5x2+4x,其中k为实数.
(1)对任意x∈[-3,3]都有f(x)≤g(x)成立,求k的取值范围.
(2)存在x∈[-3,3]使f(x)≤g(x)成立,求k的取值范围.
(3)对任意x1,x2∈[-3,3]都有f(x1)≤g(x2),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=,求f(-12)+f(-11)+f(-10)+…+f(0)+…+f(11)+f(12)+f(13)的值.

查看答案和解析>>

同步练习册答案