精英家教网 > 高中数学 > 题目详情

已知幂函数为偶函数.
(1)求的解析式;
(2)若函数在区间(2,3)上为单调函数,求实数的取值范围.

(1)  ;(2) .

解析试题分析:(1)因为是幂函数,所以 ,得出的值,在代入,看是否是偶函数;(2)将(1)的结果代入(2)式,函数在为单调函数,即在对称轴的某一侧,从而求出的取值范围.
试题解析:解:(1)由为幂函数知,得      3分
时,,符合题意;当时,,不合题意,舍去.
.                           6分
(2)由(1)得
即函数的对称轴为,                8分
由题意知在(2,3)上为单调函数,
所以,             11分
.                   12分
考点:1.幂函数的定义;2.二次函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数常数)满足.
(1)求出的值,并就常数的不同取值讨论函数奇偶性;
(2)若在区间上单调递减,求的最小值;
(3)在(2)的条件下,当取最小值时,证明:恰有一个零点且存在递增的正整数数列,使得成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点为圆心的两个同心圆弧、弧以及两条线段围成的封闭图形.花坛设计周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米(),圆心角为弧度.

(1)求关于的函数关系式;
(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,当为何值时,取得最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数,若在定义域存在实数,满足,则称为“局部奇函数”.
(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(2)设是定义在上的“局部奇函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在R上的函数满足,当时,
,且.
(1)求的值;
(2)当时,关于的方程有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量与时间小时间的关系为.如果在前个小时消除了的污染物,试求:
(1)个小时后还剩百分之几的污染物?
(2)污染物减少所需要的时间.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲厂以x千克/小时的速度运输生产某种产品(生产条件要求1≤x≤10),每小时可获得利润是100(5x+1-)元.
(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lg(ax-bx)(a>1>b>0).
(1)求函数y=f(x)的定义域;
(2)在函数y=f(x)的图象上是否存在不同的两点,使过此两点的直线平行于x轴;
(3)当a、b满足什么关系时,f(x)在区间上恒取正值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在R上的函数及二次函数满足:
(1)求的解析式;
(2)
(3)设,讨论方程的解的个数情况.

查看答案和解析>>

同步练习册答案