【题目】如图,已知
,
,
分别为
的中点,
,将
沿
折起,得到四棱锥
,
为
的中点.
![]()
(1)证明:
平面
;
(2)当正视图方向与向量
的方向相同时,
的正视图为直角三角形,求此时二面角
的余弦值.
【答案】(1)证明见解析;(2)![]()
【解析】
(1)根据题意可知
,由三线合一可证明
,进而由线面垂直的判定可证明
平面
;
(2)先证明
,然后以
为原点,
为
轴,
为
轴,
为
轴建立空间直角坐标系,写出各个点的坐标,并求得平面
的一个法向量,
为平面
的一个法向量,即可由二面角的向量求法求得二面角
的余弦值.
(1)由平面图可知,
,
,
,
所以
平面
,所以
.
因为
为
的中点,
,
∴
.
因为
,
所以
平面
.
(2)因为
的正视图与
全等,所以
为直角三角形,故
.
以
为原点,
为
轴,
为
轴,
为
轴建立空间直角坐标系如下图所示,
![]()
则
,
,
,
,
,
,
所以
,
,
,
设平面
的一个法向量为
,则
,
∴
,令
,∴
,
因为
为平面
的一个法向量,设二面角
为
,
所以
,
因为二面角
为钝角,所以
,
故二面角
的余弦值为
.
科目:高中数学 来源: 题型:
【题目】已知A,B是抛物线
上的两点,且在x轴两侧,若AB的中点为Q,分别过A,B两点作T的切线,且两切线相交于点P.
(1)求证:直线PQ平行于x轴;
(2)若直线AB经过抛物线T的焦点,求
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一,为坚决打赢脱贫攻坚战,某帮扶单位考察了甲乙两种不同的农产品加工生产方式,现对两种生产方式加工的产品质量进行测试并打分对比,得到如下数据:
生产方式甲 | 分值区间 |
|
|
|
|
|
频数 | 20 | 30 | 100 | 40 | 10 | |
生产方式乙 | 分值区间 |
|
|
|
|
|
频数 | 25 | 35 | 60 | 50 | 30 |
其中产品质量按测试指标可划分为:指标在区间
上的为特优品,指标在区间
上的为一等品,指标在区间
上的为二等品.
(1)用事件
表示“按照生产方式甲生产的产品为特优品”,估计
的概率;
(2)填写下面列联表,并根据列联表判断能否有
的把握认为“特优品”与生产方式有关?
特优品 | 非特优品 | |
生产方式甲 | ||
生产方式乙 |
(3)根据打分结果对甲乙两种生产方式进行优劣比较.
附表:
| 0.10 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
参考公式:
,其中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆
的离心率为
,且过点
.
为椭圆的右焦点,
为椭圆上关于原点对称的两点,连接
分别交椭圆于
两点.
⑴求椭圆的标准方程;
⑵若
,求
的值;
⑶设直线
,
的斜率分别为
,
,是否存在实数
,使得
,若存在,求出
的值;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面凸六边形
的边长相等,其中
为矩形,
.将
,
分别沿
,
折至
,
,且均在同侧与平面
垂直,连接
,如图所示,E,G分别是
,
的中点.
![]()
![]()
(1)求证:多面体
为直三棱柱;
(2)求二面角
平面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com