精英家教网 > 高中数学 > 题目详情
13.在△ABC中,若a=6,b=6$\sqrt{3}$,A=30°,解三角形.

分析 由正弦定理求得sinB,可得 B=60° 或120°.根据三角形的内角和公式求出角C的值,再由余弦定理求出c的值.

解答 解:∵在△ABC中,a=6,b=6$\sqrt{3}$,A=30°,由正弦定理可得sinB=$\frac{bsinA}{a}$=$\frac{6\sqrt{3}×\frac{1}{2}}{6}$=$\frac{\sqrt{3}}{2}$,
∴B=60° 或120°.
当 B=60° 时,可得 C=90°,
∴c=$\sqrt{{a}^{2}+{b}^{2}-2abcosC}$=12.
当 B=120° 时,可得 C=30°,
∴c=$\sqrt{{a}^{2}+{b}^{2}-2abcosC}$=6.
综上可得 a=6,b=6$\sqrt{3}$,c=12,A=30°,B=60°,C=90°.或a=6,b=6$\sqrt{3}$,c=6,A=30°,B=120°,C=30°.

点评 本题主要考查正弦定理、余弦定理的应用,三角形的内角和公式,解三角形,体现了分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知复数z=$\frac{1+4i}{i}$-2i,则复数z的模为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.曲线y=e-2x+1在点(0,2)处的切线方程为(  )
A.y=-2x-2B.y=2x+2C.y=-2x+2D.y=2x-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在等差数列{an}中,a1=3,d=2.an=25,则n=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.化简$\frac{sin(α+π)cos(π-α)sin(\frac{5π}{2}-α)}{tan(-α)co{s}^{3}(α-2π)}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A、D分别是BF、CE上的点,AD∥BC,且AB=DE=2BC=2AF(如图1).将四边形ADEF沿AD折起,连结BE、BF、CE(如图2).在折起的过程中,下列说法中错误的个数是(  )

①AC∥平面BEF;
②B、C、E、F四点不可能共面;
③若EF⊥CF,则平面ADEF⊥平面ABCD;
④平面BCE与平面BEF可能垂直.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=$\left\{\begin{array}{l}{x^2}-3,(x<0)\\ x-1,(x≥0)\end{array}$,若f(x)=2,则x=3或$-\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=lnx在点P(x0,f(x0))处的切线l与函数lg(x)=ex的图象也相切,则满足条件的切点P的个数有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-x2;求x<0时,f(x)的解析式.

查看答案和解析>>

同步练习册答案