精英家教网 > 高中数学 > 题目详情
已知椭圆<“m“:math dsi:zoomscale=150 dsi:_mathzoomed=1>x29+y2b=1
x2
9
+
y2
b
=1
的一条准线方程是x=
9
2
,则b=
5
5
分析:依题意,椭圆的焦点在x轴,利用椭圆的准线方程x=
a2
c
=
9
2
可求得c,从而可求得b.
解答:解:∵椭圆
x2
9
+
y2
b
=1的一条准线方程为x=
9
2

∴该椭圆焦点在x轴,且a2=9,
∴准线方程为:x=
a2
c
=
9
2

∴c=2.
∴b=a2-c2=9-4=5.
故答案为:5.
点评:本题考查椭圆的简单性质,考查其准线方程的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1
x2
a2
+
y2
b2
=1
以抛物线y2=4
3
x
的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线x2=
1
mn
y
异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丰台区二模)已知椭圆C:
x2
4
+y2=1
的短轴的端点分别为A,B,直线AM,BM分别与椭圆C交于E,F两点,其中点M (m,
1
2
) 满足m≠0,且m≠±
3

(Ⅰ)求椭圆C的离心率e;
(Ⅱ)用m表示点E,F的坐标;
(Ⅲ)若△BME面积是△AMF面积的5倍,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
过点(2,
3
)
,且它的离心率e=
1
2
.直线l:y=kx+t与椭圆C1交于M、N两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)当k=
3
2
时,求证:M、N两点的横坐标的平方和为定值;
(Ⅲ)若直线l与圆C2:(x-1)2+y2=1相切,椭圆上一点P满足
OM
+
ON
OP
,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰安二模)已知椭圆E:
x2
a2
+
y2
b2
 
=1(a>b>0)的左、右焦点分别为F1、F2,点P(x1,y1)是椭圆上任意一点,且|PF1|+|PF2|=4,椭圆的离心率e=
1
2

(I)求椭圆E的标准方程;
(II)直线PF1交椭圆E于另一点Q(x1,y2),椭圆右顶点为A,若
AP
AQ
=3,求直线PF1的方程;
(III)过点M(
1
4
x1
,0)作直线PF1的垂线,垂足为N,当x1变化时,线段PN的长度是否为定值?若是,请写出这个定值,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率
2
2
,直线l:x-y+
2
=0
与以原点为圆心,以椭圆C的短半轴长为半径的圆相切.
(I)求椭圆C的方程;
(Ⅱ)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=4,证明:直线AB过定点N(-
1
2
,-l).

查看答案和解析>>

同步练习册答案