精英家教网 > 高中数学 > 题目详情
6.已知绕原点逆时针旋转变换矩阵为$[\begin{array}{l}-\frac{{\sqrt{3}}}{2}&&&-\frac{1}{2}\\ \frac{1}{2}&&&-\frac{{\sqrt{3}}}{2}\end{array}]$,则其旋转角θ(θ∈[0,2π))为$\frac{2π}{3}$.

分析 由题意$[\begin{array}{l}{cosθ}&{-sinθ}\\{sinθ}&{cosθ}\end{array}]$=$[\begin{array}{l}-\frac{{\sqrt{3}}}{2}&&&-\frac{1}{2}\\ \frac{1}{2}&&&-\frac{{\sqrt{3}}}{2}\end{array}]$,即可求得旋转角θ.

解答 解:由题意可知:$[\begin{array}{l}{cosθ}&{-sinθ}\\{sinθ}&{cosθ}\end{array}]$=$[\begin{array}{l}-\frac{{\sqrt{3}}}{2}&&&-\frac{1}{2}\\ \frac{1}{2}&&&-\frac{{\sqrt{3}}}{2}\end{array}]$,
则$\left\{\begin{array}{l}{cosθ=-\frac{\sqrt{3}}{2}}\\{sinθ=\frac{1}{2}}\end{array}\right.$,则旋转角θ=$\frac{2π}{3}$,
故答案为:$\frac{2π}{3}$.

点评 本题考查矩阵的变换,考查特殊角的三角函数的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知n=$\frac{9}{4}$${∫}_{0}^{2}$x2dx,若(1+2x)n=a0+a1x+a2x2+a3x3+a4x4+…+anxn,则a0+a1+a3+a5=(  )
A.364B.365C.728D.730

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2列联表;
(2)判断是否有95%的把握认为“性别与休闲方式”有关系.
附:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(Χ2>k00.1000.0500.010
k02.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等比数列{an}中,公比q=2,首项a1=2,函数f(x)=x(x-a1)(x-a2),则f'(0)=(  )
A.8B.-8C.28D.-28

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=-x2+mlnx(m∈R).
(1)求函数f(x)的单调区间;
(2)若m=2时,函数f(x)与$g(x)=x-\frac{a}{x}(a∈R)$有相同极值点.
①求实数a的值;
②若对于$?{x_1},{x_2}∈[{\frac{1}{e},5}]$(e为自然对数的底数),不等式$\frac{{f({x_1})-g({x_2})}}{t+1}≤1$恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在极坐标系中,圆C的极坐标方程为ρ2=4ρ(cosθ+sinθ)-3,若以极点O为原点,极轴所在的直线为x轴建立平面直角坐标系
(1)求圆C的参数方程;
(2)在直角坐标系中,点P(x,y)是圆C上的动点,试求x+2y的最大值,并求出此时点P的直角坐标;
(3)已知$l:\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}t}}{2}\end{array}\right.(t$为参数),曲线${C_1}:\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}\right.(θ$为参数),若版曲线C1上各点恒坐标压缩为原来的$\frac{1}{2}$倍,纵坐标压缩为原来的$\frac{{\sqrt{3}}}{2}$倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某同学在利用“五点法”作函数f(x)=Asin(ωx+Φ)+t的图象时,列出了如下表格中的部分数据
x$\frac{5π}{12}$$\frac{3π}{4}$
ωx+Φ0$\frac{π}{2}$π$\frac{3π}{2}$
f(x)6-2
(1)请将表格补充完整,并写出f(x)的解析式;
(2)若x∈[-$\frac{5π}{12},\frac{π}{4}}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中直线l1的倾斜角为α,且经过点P(1,-1),以坐标系xOy的原点为极点,x轴的非负半轴为极轴,建立极坐标系Ox,曲线E的极坐标方程为ρ=4cosθ,直线l1与曲线E相交于A、B两点,过点P的直线l2与曲线E相交于C、D两点,且l1⊥l2
(1)平面直角坐标系中,求直线l1的一般方程和曲线E的标准方程;
(2)求证:AB2+CD2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在某化学反应的中间阶段,压力保持不变,温度从1°变化到5°,反应结果如下表所示(x代表温度,y代表结果):
x12345
y3571011
(1)请在给出的坐标系中画出上表数据的散点图(点要描粗)
(2)求化学反应的结果y对温度x的线性回归方程$\hat y=\widehatbx+\hat a$;
(3)判断变量x与y是正相关还是负相关,并预测当温度达到10°时反应结果为多少?
附:线性回归方程$\hat y=\widehatbx+\hat a$中,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\bar x\bar y}}{{\sum_{i=1}^n{x_i^2}-n{{\bar x}^2}}}$,$\hat a=\bar y-\hat b\overline x$.

查看答案和解析>>

同步练习册答案