精英家教网 > 高中数学 > 题目详情
18.某同学在利用“五点法”作函数f(x)=Asin(ωx+Φ)+t的图象时,列出了如下表格中的部分数据
x$\frac{5π}{12}$$\frac{3π}{4}$
ωx+Φ0$\frac{π}{2}$π$\frac{3π}{2}$
f(x)6-2
(1)请将表格补充完整,并写出f(x)的解析式;
(2)若x∈[-$\frac{5π}{12},\frac{π}{4}}$],求f(x)的最大值和最小值.

分析 (1)根据三角函数的性质以及“五点”画法,计算填表即可.选取坐标求出A,ω,Φ,t的值.可得f(x)的解析式;
(2)x∈[-$\frac{5π}{12},\frac{π}{4}}$]时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的最大值和最小值.

解答 解:由题意,可知A=4,t=2.
当x=$\frac{5π}{12}$时,ωx+Φ=π…①
当x=$\frac{3π}{4}$时,ωx+Φ=$\frac{3π}{2}$…②.
由①②可得:ω=$\frac{3}{2}$,Φ=$\frac{3π}{8}$
∴当x=$-\frac{π}{4}$时,ωx+Φ=0.
∴当ωx+Φ=$\frac{π}{2}$时,x=$\frac{π}{12}$.
∴当ωx+Φ=2π时,x=$\frac{13π}{12}$.
∴函数f(x)的解析式为f(x)=4sin($\frac{3}{2}x$+$\frac{3π}{8}$)+2.
(2)x∈[-$\frac{5π}{12},\frac{π}{4}}$]时,
则$\frac{3}{2}x$+$\frac{3π}{8}$∈[$-\frac{π}{4}$,$\frac{3π}{4}$],
∴当$\frac{3}{2}x$+$\frac{3π}{8}$=$-\frac{π}{4}$时,函数f(x)取得最小值为4×$(-\frac{\sqrt{2}}{2})+2$=2$-2\sqrt{2}$.
当$\frac{3}{2}x$+$\frac{3π}{8}$=$\frac{π}{2}$时,函数f(x)取得最大值为4×1+2=6.

点评 本题考查了五点画法的计算和解析式的确定,性质的运用.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在△ABC中,已知面积S=$\frac{1}{4}$(a2+b2-c2),则角C的度数为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,若B=3C,求$\frac{b}{c}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知绕原点逆时针旋转变换矩阵为$[\begin{array}{l}-\frac{{\sqrt{3}}}{2}&&&-\frac{1}{2}\\ \frac{1}{2}&&&-\frac{{\sqrt{3}}}{2}\end{array}]$,则其旋转角θ(θ∈[0,2π))为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是20+$4\sqrt{2}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某几何体的三视图如图所示,则该几何体的体积是2π-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,网络纸上小正方形的边长为1,粗实线和粗虚线画出的是某三棱锥的三视图,则该三棱锥的体积为(  )
A.$\frac{32}{3}$B.$\frac{16}{3}$C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\frac{a}{c^2}$>$\frac{b}{c^2}$,则下列不等式一定成立的是(  )
A.a2>b2B.$\frac{1}{b}$>$\frac{1}{a}$C.lg a>lg bD.($\frac{1}{3}$)b>($\frac{1}{3}$)a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{{\sqrt{3}}}{2}$sin(2x+$\frac{π}{3}$)-cos2x+$\frac{1}{2}$.
(Ⅰ)求函数f(x)在[0,π]上的单调递增区间;
(Ⅱ)在△ABC中,a、b、c分别为角A、B、C的对边,f(A)=$\frac{1}{4}$,a=3,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案