精英家教网 > 高中数学 > 题目详情
13.如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是20+$4\sqrt{2}$cm2

分析 由三视图还原原几何体,可得原几何体为组合体,下面是棱长为2的正方体,上面是正四棱锥,正四棱锥的高是1.求出上面四棱锥的斜高,则表面积可求.

解答 解:由三视图还原原几何体如图,

几何体为组合体,下面是棱长为2的正方体,上面是正四棱锥,正四棱锥的高是1.
则正四棱锥的斜高为$\sqrt{2}$.
∴组合体的表面积为$5×2×2+4×\frac{1}{2}×2×\sqrt{2}=20+4\sqrt{2}$(cm2).
故答案为:20+4$\sqrt{2}$.

点评 本题考查由三视图求几何体的体积,考查空间想象能力和思维能力,关键是由三视图还原原几何体,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.如图,在△OAB,点P在边AB上,且AP:PB=5:3,则$\overrightarrow{OP}$=(  )
A.$\frac{5}{8}$$\overrightarrow{OB}$+$\frac{3}{8}$$\overrightarrow{OA}$B.$\frac{5}{8}$$\overrightarrow{OA}$+$\frac{3}{8}$$\overrightarrow{OB}$C.$\frac{5}{8}$$\overrightarrow{OB}$-$\frac{3}{8}$$\overrightarrow{OA}$D.$\frac{5}{8}$$\overrightarrow{OA}$-$\frac{3}{8}$$\overrightarrow{OB}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x3+ax2+bx(x>0)在x=3处取得极值0.
(1)求函数f(x)的解析式;
(2)已知A(x1,y1),B(x2,y2)是函数y=f(x),x∈[1,3]图象上两个不同的点,且$|{{x_1}-{x_2}}|=\sqrt{3}$,图象在A(x1,y1),B(x2,y2)两点处的切线的斜率分别为k1,k2,证明:$\sqrt{|{{k_1}{k_2}}|}≤3({1-\frac{m}{4}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=-x2+mlnx(m∈R).
(1)求函数f(x)的单调区间;
(2)若m=2时,函数f(x)与$g(x)=x-\frac{a}{x}(a∈R)$有相同极值点.
①求实数a的值;
②若对于$?{x_1},{x_2}∈[{\frac{1}{e},5}]$(e为自然对数的底数),不等式$\frac{{f({x_1})-g({x_2})}}{t+1}≤1$恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某四棱锥的三视图如图所示,该四棱锥外接球的体积为(  )
A.$\frac{{\sqrt{6}}}{3}π$B.$\frac{{\sqrt{6}}}{2}π$C.$\sqrt{6}π$D.$3\sqrt{6}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某同学在利用“五点法”作函数f(x)=Asin(ωx+Φ)+t的图象时,列出了如下表格中的部分数据
x$\frac{5π}{12}$$\frac{3π}{4}$
ωx+Φ0$\frac{π}{2}$π$\frac{3π}{2}$
f(x)6-2
(1)请将表格补充完整,并写出f(x)的解析式;
(2)若x∈[-$\frac{5π}{12},\frac{π}{4}}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某班级有一个学生A在操场上绕圆形跑道逆时针方向匀速跑步,每52秒跑一圈,在学生A开始跑步时,在教室内有一个学生B往操场看了一次,以后每50秒往操场上看一次,则该学生B“感觉”到学生A的运动是(  )
A.逆时针方向匀速前跑B.顺时针方向匀速前跑
C.顺时针方向匀速后退D.静止不动

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某校为了解高二年级不同性别的学生对取消艺术课的态度(支持或反对)进行了如下的调查研究.全年级共有1350人,男女生比例为8:7,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为$\frac{1}{9}$,通过对被抽取学生的问卷调查,得到如下2×2列联表:
支持反对总计
男生30
女生25
总计
(1)完成下列联表,并判断能否有99%的把握认为态度与性别有关?
(2)若某班有6名男生被抽到,其中2人支持,4人反对;有4名女生被抽到,其中2人支持,2人反对,现从这10人中随机抽取一男一女进一步调查原因.求其中恰有一人支持一人反对的概率.
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$
P(K2≥k00.100.0500.0100.0050.001
k02.7069%3.8416.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,曲线C1的方程为x2+y2=1,在以原点为极点,x轴的非负关轴为极轴的极坐标系中,直线l的极坐标方程为$ρ=\frac{8}{cosθ+2sinθ}$.
(1)将C1上的所有点的横坐标和纵坐标分别伸长到原来的2倍和$\sqrt{3}$倍后得到曲线C2,求曲线C2的参数方程;
(2)若P,Q分别为曲线C2与直线l的两个动点,求|PQ|的最小值以及此时点P的坐标.

查看答案和解析>>

同步练习册答案