精英家教网 > 高中数学 > 题目详情
10.如图,网络纸上小正方形的边长为1,粗实线和粗虚线画出的是某三棱锥的三视图,则该三棱锥的体积为(  )
A.$\frac{32}{3}$B.$\frac{16}{3}$C.$\frac{8}{3}$D.$\frac{4}{3}$

分析 以正方体为载体作出三棱锥的直观图,代入体积公式计算即可.

解答 解:几何体为三棱锥P-OBD,其中P,B,D为正方体的顶点,O为正方形ABCD的中心,
正方体的棱长为4,
∴VP-OBD=$\frac{1}{3}{S}_{△OBD}•PA$=$\frac{1}{3}×\frac{1}{2}×4×2×4$=$\frac{16}{3}$.
故选:B.

点评 本题考查了四棱锥的三视图、勾股定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知对任意平面向量$\overrightarrow{AB}$=(x,y),把$\overrightarrow{AB}$绕其起点沿逆时针方向旋转θ角得到的向量$\overrightarrow{AP}$=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把点B绕点A逆时针方向旋转θ得到点P.
(1)已知平面内点A(2,3),点B(2+2$\sqrt{3}$,1).把点B绕点A逆时针方向旋转$\frac{π}{6}$角得到点P,求点P的坐标.
(2)设平面内曲线C上的每一点绕坐标原点沿顺时针方向旋转$\frac{π}{4}$后得到的点的轨迹方程是曲线y=$\frac{1}{x}$,求原来曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=-x2+mlnx(m∈R).
(1)求函数f(x)的单调区间;
(2)若m=2时,函数f(x)与$g(x)=x-\frac{a}{x}(a∈R)$有相同极值点.
①求实数a的值;
②若对于$?{x_1},{x_2}∈[{\frac{1}{e},5}]$(e为自然对数的底数),不等式$\frac{{f({x_1})-g({x_2})}}{t+1}≤1$恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某同学在利用“五点法”作函数f(x)=Asin(ωx+Φ)+t的图象时,列出了如下表格中的部分数据
x$\frac{5π}{12}$$\frac{3π}{4}$
ωx+Φ0$\frac{π}{2}$π$\frac{3π}{2}$
f(x)6-2
(1)请将表格补充完整,并写出f(x)的解析式;
(2)若x∈[-$\frac{5π}{12},\frac{π}{4}}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某班级有一个学生A在操场上绕圆形跑道逆时针方向匀速跑步,每52秒跑一圈,在学生A开始跑步时,在教室内有一个学生B往操场看了一次,以后每50秒往操场上看一次,则该学生B“感觉”到学生A的运动是(  )
A.逆时针方向匀速前跑B.顺时针方向匀速前跑
C.顺时针方向匀速后退D.静止不动

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中直线l1的倾斜角为α,且经过点P(1,-1),以坐标系xOy的原点为极点,x轴的非负半轴为极轴,建立极坐标系Ox,曲线E的极坐标方程为ρ=4cosθ,直线l1与曲线E相交于A、B两点,过点P的直线l2与曲线E相交于C、D两点,且l1⊥l2
(1)平面直角坐标系中,求直线l1的一般方程和曲线E的标准方程;
(2)求证:AB2+CD2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某校为了解高二年级不同性别的学生对取消艺术课的态度(支持或反对)进行了如下的调查研究.全年级共有1350人,男女生比例为8:7,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为$\frac{1}{9}$,通过对被抽取学生的问卷调查,得到如下2×2列联表:
支持反对总计
男生30
女生25
总计
(1)完成下列联表,并判断能否有99%的把握认为态度与性别有关?
(2)若某班有6名男生被抽到,其中2人支持,4人反对;有4名女生被抽到,其中2人支持,2人反对,现从这10人中随机抽取一男一女进一步调查原因.求其中恰有一人支持一人反对的概率.
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$
P(K2≥k00.100.0500.0100.0050.001
k02.7069%3.8416.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知x2+4xy-3=0,其中x>0,y∈R,则x+y的最小值是(  )
A.$\frac{3}{2}$B.3C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示的三角形数阵叫“牛顿调和三角形”,它们是由整数的倒数组成的,第n行有n个数且两端的数均为$\frac{1}{n}$
(n≥2),每个数是它下一行左右相邻两数的和,如$\frac{1}{1}$=$\frac{1}{2}$$+\frac{1}{2}$,$\frac{1}{2}=\frac{1}{3}+\frac{1}{6}$,$\frac{1}{3}=\frac{1}{4}+\frac{1}{12}$,…
                                         $\frac{1}{1}$
                                  $\frac{1}{2}$             $\frac{1}{2}$
                        $\frac{1}{3}$              $\frac{1}{6}$             $\frac{1}{3}$
               $\frac{1}{4}$              $\frac{1}{12}$             $\frac{1}{12}$          $\frac{1}{4}$
      $\frac{1}{5}$             $\frac{1}{20}$              $\frac{1}{30}$             $\frac{1}{20}$         $\frac{1}{5}$
     …
则第6行第3个数(从左往右数)为$\frac{1}{60}$.

查看答案和解析>>

同步练习册答案