| A. | $\frac{3}{2}$ | B. | 3 | C. | 1 | D. | 2 |
分析 先求出y,再根据基本不等式即可求出最值.
解答 解:x2+4xy-3=0,其中x>0,则y=$\frac{3-{x}^{2}}{4x}$,
则x+y=x+$\frac{3-{x}^{2}}{4x}$=x+$\frac{3}{4x}$-$\frac{x}{4}$=$\frac{3}{4}$x+$\frac{3}{4x}$=$\frac{3}{4}$(x+$\frac{1}{x}$)≥$\frac{3}{4}$×2$\sqrt{x•\frac{1}{x}}$=$\frac{3}{2}$,当且仅当x=1时取等号,
则x+y的最小值是$\frac{3}{2}$.
故选:A
点评 本题考查基本不等式的应用,属基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{32}{3}$ | B. | $\frac{16}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a2>b2 | B. | $\frac{1}{b}$>$\frac{1}{a}$ | C. | lg a>lg b | D. | ($\frac{1}{3}$)b>($\frac{1}{3}$)a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com