精英家教网 > 高中数学 > 题目详情
4.某几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{1}{3}$B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{10}{3}$

分析 根据几何体的三视图知,该几何体是直三棱柱,截去一个三棱锥,画出直观图,求出它的体积.

解答 解:根据几何体的三视图知,
该几何体是直三棱柱,截去一个三棱锥,如图所示;
结合图中数据,计算它的体积是
V几何体=V三棱柱-V三棱锥=$\frac{1}{2}$×22×2-$\frac{1}{3}$×$\frac{1}{2}$×22×1=$\frac{10}{3}$.
故选:D.

点评 本题考查了几何体三视图的应用问题,解题的关键是根据三视图得出几何体结构特征,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.等比数列{an}中,公比q=2,首项a1=2,函数f(x)=x(x-a1)(x-a2),则f'(0)=(  )
A.8B.-8C.28D.-28

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中直线l1的倾斜角为α,且经过点P(1,-1),以坐标系xOy的原点为极点,x轴的非负半轴为极轴,建立极坐标系Ox,曲线E的极坐标方程为ρ=4cosθ,直线l1与曲线E相交于A、B两点,过点P的直线l2与曲线E相交于C、D两点,且l1⊥l2
(1)平面直角坐标系中,求直线l1的一般方程和曲线E的标准方程;
(2)求证:AB2+CD2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆C的方程为:(x-1)2+y2=4
(1)已知直线m:x-y+1=0与圆C交于A、B两点,求A、B两点的距离|AB|
(2)求过点P(3,3)且与圆C相切的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知x2+4xy-3=0,其中x>0,y∈R,则x+y的最小值是(  )
A.$\frac{3}{2}$B.3C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,某几何体的三视图中,正视图和左视图均由边长为1的正三角形构成,俯视图由半径为1和$\frac{1}{2}$的两个同心圆组成,则该几何体的体积为(  )
A.$\frac{{\sqrt{3}π}}{4}$B.$\frac{{\sqrt{3}π}}{6}$C.$\frac{{\sqrt{3}π}}{8}$D.$2\sqrt{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在某化学反应的中间阶段,压力保持不变,温度从1°变化到5°,反应结果如下表所示(x代表温度,y代表结果):
x12345
y3571011
(1)请在给出的坐标系中画出上表数据的散点图(点要描粗)
(2)求化学反应的结果y对温度x的线性回归方程$\hat y=\widehatbx+\hat a$;
(3)判断变量x与y是正相关还是负相关,并预测当温度达到10°时反应结果为多少?
附:线性回归方程$\hat y=\widehatbx+\hat a$中,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\bar x\bar y}}{{\sum_{i=1}^n{x_i^2}-n{{\bar x}^2}}}$,$\hat a=\bar y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系XOY中,F1,F2分别为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,B(0,b),连接BF2并延长,交椭圆于A,C与A关于X轴对称
(1)若C($\frac{4}{3}$,$\frac{1}{3}$),BF2=$\sqrt{2}$,求椭圆方程
(2)若F1C⊥AB,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.观察下列各式:1=1,1+$\frac{1}{1+2}$=$\frac{4}{3}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$=$\frac{3}{2}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$=$\frac{8}{5}$,由上述等式能得出怎样的结论?请写出结论,并证明.

查看答案和解析>>

同步练习册答案