精英家教网 > 高中数学 > 题目详情
12.已知圆C的方程为:(x-1)2+y2=4
(1)已知直线m:x-y+1=0与圆C交于A、B两点,求A、B两点的距离|AB|
(2)求过点P(3,3)且与圆C相切的直线l的方程.

分析 (1)利用圆的到直线的距离与半径,弦长的关系求解即可.
(2)设出直线方程,利用圆心到直线的距离列出方程求解即可.

解答 解:(1)圆心到直线的距离d=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,
∴|AB|=2$\sqrt{4-2}$=2$\sqrt{2}$.
(2)当过点M的直线的斜率存在时,设其方程为y-3=k(x-3),即kx-y-3k+3=0,
∵圆心(1,0)到切线l的距离等于半径2,
∴$\frac{|-2k+3|}{\sqrt{1+{k}^{2}}}$=2,解得k=$\frac{5}{12}$,
∴切线方程为y-3=$\frac{5}{12}$(x-3),即5x-12y+21=0,
当过点M的直线的斜率不存在时,其方程为x=3,圆心(1,0)到此直线的距离等于半径2,
故直线x=3也适合题意.
所以,所求的直线l的方程是5x-12y+21=0或x=3.

点评 本题考查直线与圆的位置关系的综合应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足x2+y2-2y=0,则$\frac{y-1}{x-2}$的取值范围为(  )
A.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$B.$[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$C.$[-\sqrt{3},\sqrt{3}]$D.$({-\sqrt{2},\sqrt{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某几何体的三视图如图所示,则该几何体的体积是2π-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\frac{a}{c^2}$>$\frac{b}{c^2}$,则下列不等式一定成立的是(  )
A.a2>b2B.$\frac{1}{b}$>$\frac{1}{a}$C.lg a>lg bD.($\frac{1}{3}$)b>($\frac{1}{3}$)a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示(网格中的小正方形边长为),则该几何体的体积为(  )
A.$\frac{16}{3}$B.$\frac{10}{3}$C.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{1}{3}$B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xoy中,点${F_1}({-\sqrt{3},0})$,圆F2:x2+y2-2$\sqrt{3}$x-13=0,以动点P为圆心的圆经过点F1,且圆P与圆F2内切.
(1)求动点的轨迹的方程;
(2)若直线l过点(1,0),且与曲线E交于A,B两点,则在x轴上是否存在一点D(t,0)(t≠0),使得x轴平分∠ADB?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.两条相交直线的平行投影是(  )
A.两条相交直线B.一条直线
C.一条折线D.两条相交直线或一条直线

查看答案和解析>>

同步练习册答案