精英家教网 > 高中数学 > 题目详情
16.在某化学反应的中间阶段,压力保持不变,温度从1°变化到5°,反应结果如下表所示(x代表温度,y代表结果):
x12345
y3571011
(1)请在给出的坐标系中画出上表数据的散点图(点要描粗)
(2)求化学反应的结果y对温度x的线性回归方程$\hat y=\widehatbx+\hat a$;
(3)判断变量x与y是正相关还是负相关,并预测当温度达到10°时反应结果为多少?
附:线性回归方程$\hat y=\widehatbx+\hat a$中,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\bar x\bar y}}{{\sum_{i=1}^n{x_i^2}-n{{\bar x}^2}}}$,$\hat a=\bar y-\hat b\overline x$.

分析 (1)在给出的坐标系中画出数据的散点图即可;
(2)由题意计算平均数与回归系数,写出回归方程,
(3)由回归系数$(\widehatb=2.1>0)$判断x与y之间是正相关,利用回归方程计算x=10时$\stackrel{∧}{y}$的值.

解答 解:(1)在给出的坐标系中画出上表数据的散点图(点要描粗),如图所示;

(2)由题意,n=5,计算$\overline x=\frac{1}{5}\sum_{i=1}^5{x_i}=3$,
$\overline y=\frac{1}{5}\sum_{i=1}^5{y_i}=7.2$,
又$\sum_{i=1}^5{{x_i}^2}-5{\overline x^2}=55-5×9=10$,
$\sum_{i=1}^5{{x_i}{y_i}}-5\overline x\overline y=129-5×3×7.2=21$;
∴$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}=\frac{21}{10}=2.1$,
$\widehata=\overline y-b\overline x=7.2-2.1×3=0.9$,
故所求的回归方程为$\widehaty=2.1x+0.9$;
(3)由于变量y的值随温度x的值增加而增加$(\widehatb=2.1>0)$,故x与y之间是正相关.
当x=10时,$\widehaty=2.1×10+0.9=21.9$,
即预测当温度达到10°时反应结果为21.9.

点评 本题考查了散点图与线性回归方程的应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知绕原点逆时针旋转变换矩阵为$[\begin{array}{l}-\frac{{\sqrt{3}}}{2}&&&-\frac{1}{2}\\ \frac{1}{2}&&&-\frac{{\sqrt{3}}}{2}\end{array}]$,则其旋转角θ(θ∈[0,2π))为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\frac{a}{c^2}$>$\frac{b}{c^2}$,则下列不等式一定成立的是(  )
A.a2>b2B.$\frac{1}{b}$>$\frac{1}{a}$C.lg a>lg bD.($\frac{1}{3}$)b>($\frac{1}{3}$)a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{1}{3}$B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,有一直径为8的半圆形,半圆周上有一点C满足$∠ABC=\frac{π}{6}$,动点E,F在直径AB上,满足$∠ECF=\frac{π}{6}$,
(1)若$CE=\sqrt{13}$,求AE的长;
(2)设∠ACE=α,求三角形△ECF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xoy中,点${F_1}({-\sqrt{3},0})$,圆F2:x2+y2-2$\sqrt{3}$x-13=0,以动点P为圆心的圆经过点F1,且圆P与圆F2内切.
(1)求动点的轨迹的方程;
(2)若直线l过点(1,0),且与曲线E交于A,B两点,则在x轴上是否存在一点D(t,0)(t≠0),使得x轴平分∠ADB?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{{\sqrt{3}}}{2}$sin(2x+$\frac{π}{3}$)-cos2x+$\frac{1}{2}$.
(Ⅰ)求函数f(x)在[0,π]上的单调递增区间;
(Ⅱ)在△ABC中,a、b、c分别为角A、B、C的对边,f(A)=$\frac{1}{4}$,a=3,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.圆x2+y2-4x-2y-11=0上的点到直线x+y-13=0的最大距离与最小距离之差是8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.《数学万花筒》第3页中提到如下“奇特的规律”:
1×1=1
11×11=121
111×111=12321

按照这种模式,1111111×1111111=1234567654321.

查看答案和解析>>

同步练习册答案