精英家教网 > 高中数学 > 题目详情
14.观察下列各式:1=1,1+$\frac{1}{1+2}$=$\frac{4}{3}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$=$\frac{3}{2}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$=$\frac{8}{5}$,由上述等式能得出怎样的结论?请写出结论,并证明.

分析 根据题意观察可得结论,并用裂项求和即可证明

解答 解:由1=1=$\frac{2}{2}$,1+$\frac{1}{1+2}$=$\frac{4}{3}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$=$\frac{3}{2}$=$\frac{6}{4}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$=$\frac{8}{5}$,由于可得到1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+…+n}$=$\frac{2n}{n+1}$,
证明如下:由于$\frac{1}{1+2+…+n}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+…+n}$=2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=2(1-$\frac{1}{n+1}$)=$\frac{2n}{n+1}$

点评 本题考查了归纳推理的问题,以及裂项求和,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.某几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{1}{3}$B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.圆x2+y2-4x-2y-11=0上的点到直线x+y-13=0的最大距离与最小距离之差是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.两条相交直线的平行投影是(  )
A.两条相交直线B.一条直线
C.一条折线D.两条相交直线或一条直线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对于任意实数,直线y=x+b与椭圆$\left\{\begin{array}{l}{x=2cosθ}\\{y=4sinθ}\end{array}\right.$(0≤θ<2π)恒有公共点,则b的取值范围是[-2$\sqrt{5}$,2$\sqrt{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在极坐标系中,曲线C的极坐标方程为ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$).现以极点O为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=-2+t}\\{y=-3+\sqrt{3}t}\end{array}\right.$(t为参数).
(1)写出直线l的普通方程和曲线C的直角坐标方程;
(2)设直线l和曲线C交于A,B两点,定点P(-2,-3),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.《数学万花筒》第3页中提到如下“奇特的规律”:
1×1=1
11×11=121
111×111=12321

按照这种模式,1111111×1111111=1234567654321.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=ex-ax(x>0)有极值,则实数a的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=ax3+x+2的图象在点(1,f(1))处的切线过点(2,8),则a=1.

查看答案和解析>>

同步练习册答案