精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=ax3+x+2的图象在点(1,f(1))处的切线过点(2,8),则a=1.

分析 求出函数的导数,利用切线的方程经过的点求解即可.

解答 解:函数f(x)=ax3+x+2的导数为:f′(x)=3ax2+1,
故f′(1)=3a+1,而f(1)=a+3,
切线方程为:y-a-3=(3a+1)(x-1),因为切线方程经过(2,8),
所以8-a-3=(3a+1)(2-1),
解得a=1.
故答案为:1.

点评 本题考查函数的导数的应用,切线方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.观察下列各式:1=1,1+$\frac{1}{1+2}$=$\frac{4}{3}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$=$\frac{3}{2}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$=$\frac{8}{5}$,由上述等式能得出怎样的结论?请写出结论,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex(sinx+cosx)+a,g(x)=(a2-a+10)ex(a为常数).
(1)已知a=0,求曲线y=f(x)在(0,f(0))处的切线方程;
(2)当0≤x≤π时,求f(x)的值域;
(3)若存在x1、x2∈[0,π],使得|f(x1)-g(x2)|<13-e${\;}^{\frac{π}{2}}$成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“开心数”.例如:32是“开心数”.因32+33+34不产生进位现象;23不是“开心数”.因23+24+25产生进位现象,那么,小于100的“开心数”的个数为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在同一直角坐标系中,方程y=ax与y=x+a的图形正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义在[1,+∞)上的函数f(x)满足:①f(2x)=af(x)(a>0);②当1≤x≤2时,$f(x)=\frac{1}{2}|sin(πx)|$.若分别以函数f(x)的极值点和相应极值为横、纵坐标的点都在一条直线上,则a的值为1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用五种不同的颜色,给图中的(1)(2)(3)(4)的各部分涂色,每部分涂一种颜色,相邻部分涂不同颜色,则涂色的方法有(  )种.
A.240B.120C.60D.180

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.甲、乙两学校各派出3名队员,按事先排好的顺序出场参加围棋擂台赛,双方先由1号队员进行第一局比赛,负者被淘汰,胜者再与负方2号队员进行第二局比赛,…,直到一方队员全被淘汰为止,已知甲队的1号与乙队的1、2、3号队员比赛获胜的概率分别为$\frac{3}{4}$、$\frac{2}{3}$、$\frac{1}{2}$,甲队的2号与乙队的1、2、3号队员比赛获胜的概率分别为$\frac{2}{3}$、$\frac{1}{2}$、$\frac{1}{3}$
(1)在所有的比赛过程中,甲队的1号、2号队员都只参加一局比赛的概率;
(2)在所有的比赛过程中,将甲队1号、2号队员一共参加了的比赛的局数作为随机变量ξ,求ξ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在边长为2的正方体ABCD-A1B1C1D1中,E是BC的中点,F是DD1的中点.
(1)求证:CF∥平面A1DE;
(2)求二面角A1-DE-A的余弦值.

查看答案和解析>>

同步练习册答案