精英家教网 > 高中数学 > 题目详情
2.用五种不同的颜色,给图中的(1)(2)(3)(4)的各部分涂色,每部分涂一种颜色,相邻部分涂不同颜色,则涂色的方法有(  )种.
A.240B.120C.60D.180

分析 本题是一个分步计数问题,第一步先给(3)涂色共有5种结果,第二步再给(1)(2)涂色共有4×3种结果,第三步给(4)涂色有4种结果.

解答 解:由题意知本题是一个分步计数问题,
第一步先给(3)涂色共有5种结果,
第二步再给(1)(2)涂色共有4×3种结果,
第三步给(4)涂色有4种结果,
∴由分步计数原理知共有5×4×3×4=240
故选:A.

点评 本题考查计数原理,在一些比较复杂的题目中通常即包括分类计数原理又包括分别计数原理,注意分步和分类的综合应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.《数学万花筒》第3页中提到如下“奇特的规律”:
1×1=1
11×11=121
111×111=12321

按照这种模式,1111111×1111111=1234567654321.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$f(n)=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+…$$+\frac{1}{{{{({n-1})}^2}}}+\frac{1}{n^2}+\frac{1}{{{{({n-1})}^2}}}$$+…+\frac{1}{3^2}+\frac{1}{2^2}+\frac{1}{1^2}$(n∈N*),则当k∈N*时,f(k+1)-f(k)等于(  )
A.$\frac{1}{{({{k^2}+1})}}$B.$\frac{1}{k^2}$C.$\frac{1}{{{{({k-1})}^2}}}+\frac{1}{k^2}$D.$\frac{1}{{{{({k+1})}^2}}}+\frac{1}{k^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=ax3+x+2的图象在点(1,f(1))处的切线过点(2,8),则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某四面体的三视图如图所示,则该四面体的外接球表面积为(  )
A.29πB.64πC.41πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某校在两个班进行教学方式对比试验,两个月后进行了一次检测,试验班与对照班成绩统计如2×2列联表所示(单位:人).
 80及80分以下80分以上合计
试验班351550
对照班15m50
合计5050n
(1)求m,n;
(2)你有多大把握认为“教学方式与成绩有关系”?
参考公式及数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
其中n=a+b+c+d为样本容量.
p(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与我国古老的算法-“辗转相除法”实质一样.如图的程序框图即源于“辗转相除法”,当输入a=6102,b=2016时,输出的a=(  )
A.6B.9C.18D.54

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=ex-mx+1的图象为曲线C,若曲线C存在与直线y=-2x垂直的切线,则实数m的取值范围(  )
A.m>-2B.m>2C.$m>\frac{1}{2}$D.$m>-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=2,an+1=2an-1
(1)求证数列{an-1}是等比数列
 (2)设bn=n•(an-1),求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案