精英家教网 > 高中数学 > 题目详情
11.将函数f(x)=2sin(2x-$\frac{π}{4}$)的图象向左平移$\frac{π}{4}$个单位,得到函数g(x)的图象,则g(0)=(  )
A.$\sqrt{2}$B.2C.0D.-$\sqrt{2}$

分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,可得所得图象对应的函数的解析式g(x)=2sin(2x+$\frac{π}{4}$),再利用特殊角三角函数函数值计算即可得解.

解答 解:将函数f(x)=2sin(2x-$\frac{π}{4}$)的图象向左平移$\frac{π}{4}$个单位长度,
所得图象对应的函数的解析式为g(x)=2sin[2(x+$\frac{π}{4}$)-$\frac{π}{4}$]=2sin(2x+$\frac{π}{4}$),
则g(0)=2sin$\frac{π}{4}$=$\sqrt{2}$.
故选:A.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,特殊角的三角函数值的应用,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若圆x2+(y-1)2=r2与曲线(x-1)y=1没有公共点,则半径r的取值范围(0,$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列各式的值:
(1)cos$\frac{25π}{3}$+tan($\frac{15π}{4}$);
(2)sin810°+tan765°-cos360°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆的一般方程x2+y2-4x-2y-5=0,其半径是$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,圆x2+y2=4上一点P(x0,y0)(x0y0>0)处的切线l分别交x轴、y轴于点A,B,以A,B为顶点且以O为中心的椭圆记作C,直线OP交C于M,N两点.
(Ⅰ)若P点坐标为($\sqrt{3}$,1),求椭圆C的离心率;
(Ⅱ)证明|MN|<4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=|x•ex|,又g(x)=f2(x)+tf(x)(t∈R),若满足g(x)=-1的x有四个,则t的取值范围为(  )
A.(-∞,-$\frac{{e}^{2}+1}{e}$)B.($\frac{{e}^{2}+1}{e}$,+∞)C.(-$\frac{{e}^{2}+1}{e}$,-2)D.(2,$\frac{{e}^{2}+1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“e是无限不循环小数,所以e为无理数.”该命题是演绎推理中的三段论推理,其中大前提是(  )
A.无理数是无限不循环小数B.有限小数或有限循环小数为有理数
C.无限不循环小数是无理数D.无限小数为无理数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.滕州市正在积极创建国家森林城市,为加快生态环境建设,每年用于改造生态环境总费用为x亿元,其中用于风景区改造的为y亿元.我市决定制定生态环境改造投资方案,该方案要求同时具备下列两个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.若每年改造生态环境的总费用至少1亿元,至多4亿元,请你分析能否采用函数模型y=$\frac{1}{100}$(x3+4x+16)作为生态环境改造投资方案.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.复数4+3i的虚部为3.

查看答案和解析>>

同步练习册答案