精英家教网 > 高中数学 > 题目详情
15.已知圆C:x2+y2=25和两点A(3,4),B(-1,2),则直线AB与圆C的位置关系为相交,若点P在圆C上,且S△ABP=$\frac{5}{2}$,则满足条件的P点共有4个.

分析 求出直线AB的斜率和点斜式方程,求得圆心到直线AB的距离,与半径比较即可判断AB与圆C的关系;求出AB的长,运用三角形的面积公式,求得P到直线AB的距离,即可判断P的个数.

解答 解:直线AB的斜率为k=$\frac{4-2}{3+1}$=$\frac{1}{2}$,
即有AB:y-4=$\frac{1}{2}$(x-3),即为
x-2y+5=0,
圆心C(0,0)到直线AB的距离为$\frac{|0-0+5|}{\sqrt{{1}^{2}+{2}^{2}}}$=$\sqrt{5}$<5,
则直线AB和圆C相交;
由于|AB|=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,
S△ABP=$\frac{5}{2}$,则$\frac{1}{2}$×$2\sqrt{5}$d=$\frac{5}{2}$,
即有d=$\frac{\sqrt{5}}{2}$,即P到直线AB的距离为$\frac{\sqrt{5}}{2}$,
而C到直线AB的距离为$\sqrt{5}$>$\frac{\sqrt{5}}{2}$,
且5-$\sqrt{5}$>$\frac{\sqrt{5}}{2}$,
即有在直线AB的两侧均有两点到直线AB的距离为$\frac{\sqrt{5}}{2}$,
则满足条件的P点共有4个.
故答案为:相交;4.

点评 本题考查直线和圆的位置关系的判断,同时考查点到直线的距离公式和三角形的面积公式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.三个实数a、b、c成等比数列,若a+b+c=l成立,则b的取值范围是(  )
A.(0,$\frac{1}{3}$]B.[-1,$\frac{1}{3}$]C.[-$\frac{1}{3}$,0)D.[-1,0)∪(0,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若${∫}_{0}^{1}$(x2+mx)dx=0,则实数m的值为(  )
A.-$\frac{1}{3}$B.-2C.-1D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(x+1),-1<x<1}\\{f(2-x)+a-1,1<x<3}\end{array}\right.$(a>0,a≠1),若x1≠x2,且f(x1)=f(x2),则x1+x2与2的大小关系是(  )
A.恒大于2B.恒小于2C.恒等于2D.与a相关.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x,y满足$\left\{\begin{array}{l}{x+y-4≥0}\\{x+2y-7≤0}\\{ax-y-2≤0}\end{array}\right.$,且x2+y2的最小值为8,则正实数a的取值范围为(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=|x-1|-|x-2|.
(Ⅰ)求不等式f(x)>2x的解集;
(Ⅱ)若存在x∈R,使得f(x)>t2-t+1成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设a>0,b>0,函数f(x)=ax2-bx-a+b.
(Ⅰ)(i)求不等式f(x)<f(1)的解集;
   (ii)若f(x)在[0,1]上的最大值为b-a,求$\frac{b}{a}$的取值范围;
(Ⅱ)当x∈[0,m]时,对任意的正实数a,b,不等式f(x)≤(x+1)|2b-a|恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在等差数列{an}中,a4+a8=16,则a3+a6+a9=(  )
A.16B.20C.24D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法中正确的是(  )
A.命题“若a>b>0,则$\frac{1}{a}$<$\frac{1}{b}$”的逆命题是真命题
B.命题p:?x∈R,x2-x+1>0,则¬p:?x0∈R,x02-x0+1<0
C.“a>1,b>1”是“ab>1”成立的充分条件
D.“a>b”是“a2>b2”成立的充分不必要条件

查看答案和解析>>

同步练习册答案